Front Matter: Volume 9726
Solid State Lasers XXV: Technology and Devices

W. Andrew Clarkson
Ramesh K. Shori
Editors

15–18 February 2016
San Francisco, California, United States

Sponsored and Published by
SPIE
Contents

<table>
<thead>
<tr>
<th>vii</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ix</td>
<td>Conference Committee</td>
</tr>
</tbody>
</table>

EYESAFE AND MID-IR LASERS I

9726 01	Mid-IR laser source using hollow waveguide beam combining [9726-1]
9726 02	High brightness diode pumped Er:YAG laser system at 2.94 µm with nearly 1kW peak power [9726-2]
9726 03	High peak power ultrafast Cr:ZnSe oscillator and power amplifier [9726-3]
9726 05	Er/Yb glass laser with compact mechanical Q-switch [9726-5]
9726 06	Comparative study of broadband, narrowband and multi-wavelength resonant pumping of Er:YAG lasers (Green Photonics Award Paper) [9726-6]

SINGLE CRYSTAL FIBER LASERS

9726 09	100W class compact Yb:YAG single crystal fiber amplifier for femtosecond lasers without CPA [9726-10]
9726 0C	Cladding single crystal YAG fibers grown by laser heated pedestal growth [9726-13]
9726 0E	Micro-pulling-down furnace modification and single crystal fibers growth [9726-15]

AIRBORNE AND SPACE QUALIFIED LASERS

9726 0H	Narrow linewidth UV laser transmitter for ozone DIAL remote sensing application [9726-18]
9726 0I	Diode-pumped Alexandrite ring laser for lidar applications [9726-19]
9726 0J	Laser transmitter design and performance for the Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) instrument [9726-20]
9726 0K	A single-frequency double-pulse Ho:YLF laser for CO₂-lidar [9726-21]
9726 0M	Demonstration of a 500 mJ InnoSlab-amplifier for future lidar applications [9726-53]
PULSED LASERS I

9726 ON 100-J UV laser for dynamic compression research [9726-23]

9726 0O MW-level peak-power from a passively Q-switched hybrid fiber-bulk amplifier and its applications [9726-24]

9726 OP High energy pulsewidth tunable CPA free picosecond source [9726-25]

9726 OR A compact solid state laser [9726-27]

9726 OS High energetic and highly stable pulses from a Ho:YLF regenerative amplifier [9726-28]

PULSED LASERS II

9726 OU VCSEL-pumped passively Q-switched monolithic solid-state lasers [9726-30]

9726 OV Simple ps microchip Nd:YVO4 laser with 3.3 ps pulses at 0.2 - 1.4 MHz and single-stage amplification to the microjoule level [9726-31]

ULTRAFast LASERS

9726 OX High repetition rate (100 Hz), high peak power, high contrast femtosecond laser chain [9726-33]

9726 OY Sub-100 fs high average power directly blue-diode-laser-pumped Ti:sapphire oscillator [9726-34]

9726 OZ Performance of the Yb:Lu2O3 laser crystal in diode-pumped femtosecond oscillators and high-power regenerative amplifier [9726-35]

9726 10 Modeling and simulation of ultra-short pulse amplification [9726-36]

9726 11 High contrast broadband seeder for multi-PW laser system [9726-37]

9726 12 Ultrastar laser with an average power of 120 W at 515 nm and a highly dynamic repetition rate in the MHz range for novel applications in micromachining [9726-38]

9726 13 Latest results of 10 petawatt laser beamline for ELI nuclear physics infrastructure [9726-39]

DISK LASERS

9726 14 High-energy ultra-short pulse thin-disk lasers: new developments and applications [9726-40]

9726 15 Recent development of disk lasers at TRUMPF (Invited Paper) [9726-41]

9726 17 Progress in kW-class picosecond thin-disk lasers development at the HiLASE [9726-43]
High-gain Yb:YAG amplifier for ultrashort pulse laser at high-average power [9726-44]

Yb:YAG ceramic-based laser driver for Inertial Fusion Energy (IFE) [9726-45]

POSTER SESSION

Laser-diode pumped dysprosium-doped lead thiogallate laser output wavelength temporal evolution and tuning possibilities at 4.3-4.7 μm [9726-9]

Continuous-wave generation and tunability of eye-safe resonantly diode-pumped Er:YAG laser [9726-68]

Effect of cryogenic temperature on spectroscopic and laser properties of Er,La:SrF₂-CaF₂ crystal [9726-69]

1-W level diode pumped Pr:YLF orange laser [9726-71]

Yb doping concentration and temperature influence on Yb:LuAG thermal lensing [9726-72]

Diode pumped compact cryogenic Yb:YAG/Cr:YAG pulsed laser [9726-73]

Microchip laser based on Yb:YAG/V:YAG monolith crystal [9726-74]

Generation of Vis-NIR light within the first biological optical window via frequency upconversion in Tm³⁺- and Tm³⁺/Er³⁺-doped tellurite glass excited at 1319 nm [9726-78]

Optical properties and upconversion emission in Yb³⁺-sensitized Er³⁺- and Pr³⁺-codoped PbGeO₃: PbF₂:xF₂ (x = Mg, Ba) glass [9726-79]

LASER MATERIALS AND CHARACTERIZATION

Layered Yb:YAG ceramics produced by two different methods: processing, characterization and comparison [9726-46]

First laser operation and spectroscopic characterization of mixed garnet Yb:LuYAG ceramics [9726-47]

Spectroscopic investigation of Yb,Ho,Pr:YAG as a 3 μm laser source [9726-48]

Laser and optical properties of Yb:YAG ceramics with layered doping distribution: design, characterization and evaluation of different production processes [9726-49]

High performance ErYb:Glass for eye-safe lasers [9726-50]

NOVEL CONCEPTS I

100W class green 10ps 280μJ laser with M² <1.4 using Z-slab amplifier [9726-52]
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9726 1T</td>
<td>Random anti-reflection structures on large optics for high energy laser applications [9726-54]</td>
</tr>
<tr>
<td></td>
<td>NOVEL CONCEPTS II</td>
</tr>
<tr>
<td>9726 1U</td>
<td>Spectral and temporal control of Q-switched solid-state lasers using intracavity MEMS [9726-55]</td>
</tr>
<tr>
<td>9726 1W</td>
<td>High brightness sub-nanosecond Q-switched laser using volume Bragg gratings [9726-57]</td>
</tr>
<tr>
<td>9726 1X</td>
<td>Solid-state lasers directly pumped by InGaN diode lasers: Ti:sapphire and Pr³⁺:LiYF₄ lasers [9726-58]</td>
</tr>
<tr>
<td>9726 1Z</td>
<td>11.5W Yb:YAG planar waveguide lasers grown by pulsed laser deposition: 70% slope efficiencies at 16 W of output power [9726-60]</td>
</tr>
<tr>
<td></td>
<td>UV AND VIS LASERS</td>
</tr>
<tr>
<td>9726 22</td>
<td>A 7.5-mJ, 21-ns, 7-kHz green rotary disk laser with diffraction limited beam quality [9726-63]</td>
</tr>
<tr>
<td>9726 23</td>
<td>UV by the fourth harmonic generation of compact side-pumped Yb:YAG laser emission [9726-64]</td>
</tr>
<tr>
<td>9726 24</td>
<td>Development of high coherence high power 193nm laser [9726-66]</td>
</tr>
<tr>
<td>9726 25</td>
<td>White random lasing in mixture of ZnSe, CdS and CdSSe micropowders [9726-67]</td>
</tr>
</tbody>
</table>
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Ackermann, Matthias, 15
Aggarwal, I. D., 1T
Agnesi, A., 02
Alonso, L., M., 25
Aljariti, A. A., 25
Aljohani, M. M., 25
Aljohani, A. Y., 25
Anderson, Brian M., 1W
Arakawa, Masaki, 24
Aus der Au, J., 02
Azamoum, Y., 0X
Babin, Vladimir, 1N
Badikov, Dmitri V., 1A
Badikov, Valerii V., 1A
Bass, Michael, 1S
Basu, Santanu, 22
Bauer, Dominik, 15
Bauer, R., 1U
Bdzoch, Juraj, 00
Beecher, Stephen J., 1Z
Beitterova, Alena, 1N
Bera, Subhabrata, 0C
Bessing, Robert, 14
Biasini, Valentina, 1M
Boudjemaa, L., 11
Braun, Bernd, 0V
Broge, D., 0N
Bromage, J., 0N
Bueno, Luciano A., 1L
Burnham, Ralph, 0H
Busse, L. E., 1T
Calendron, Anne-Louise, 0S
Cankaya, Huseyin, 0S
Caracciolo, E., 0Z
Casagrande, O., 11, 13
Cassanjes, F. C., 1K
Chakrabarty, Ayan, 0C
Chalas, O., 11, 13
Chapman, James, 0C
Charbonneau, M., 13
Chard, Simon P., 1S
Charmasson, L., 0X
Chatterjee, Gourab, 05
Chen, Tong, 0U
Chen, Ying, 1S
Chick, Theresa, 0C
Chieffo, Logan R., 03
Chuang, Ti, 0H
Chyla, Michal, 17
Ciofini, Marco, 1P
Clady, R., 0X
Clark, C., 1U
Cole, Brian, 05, 23
Copeland, Drew A., 18, 19
Cuffney, R., 0N
Currier, Z., 0N
Dabney, Philip W., 0J
Derycke, C., 11
Diázaro, Tom, 23
Divliansky, Ivan, 1W
Doroshenko, Maxim E., 1A, 1C
Dorrer, C., 0N
Druon, Frédéric, 0P
Du, Detao, 1B
Duvochelle, P. A., 13
Eason, Robert W., 1Z
Ehrich, B., 0N
Eichler, H. J., 06
Eiselt, P., 0K
Elder, Ian F., 01
Elsen, F., 0M
Endo, Akira, 17
Engler, J., 0N
Esposito, Laura, 1M, 1P
Ferrara, Paolo, 1P
Ferré, A., 0X
Fibich, Martin, 1E
Fuchs, S. F., 0N
Frantz, J. A., 1T
Fritsche, H., 06
Fuchimukai, Atsushi, 24
Gaertner, M., 06
Genter, Peter, 0O
George, Simi, 1Q
Georges, Patrick, 0P
Ghosh, Chuni, 0U
Giessen, Harald, 0V
Gizzi, Leonida Antonio, 1P
Glebov, Leonid, 1W
Goldberg, Lew, 0S, 23
Gottwald, Tina, 15
Gouveia, A. E., 1K
Gouveia-Neto, A. S., 1K, 1L
Grant-Jacob, James A., 1Z
Gries, W., 06
Grohe, A., 06
Guardalini, A., 0Z
Guardalben, M., 0N
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piancastelli, Andreana</td>
<td></td>
<td>1M</td>
</tr>
<tr>
<td>Pierrot, Simonette</td>
<td></td>
<td>09</td>
</tr>
<tr>
<td>Piontek, M. C.</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Pirri, Angela</td>
<td>1N, 1P</td>
<td></td>
</tr>
<tr>
<td>Pirzi, F.</td>
<td>0Z</td>
<td></td>
</tr>
<tr>
<td>Poprawe, R.</td>
<td>0I</td>
<td></td>
</tr>
<tr>
<td>Poutous, M. K.</td>
<td>1T</td>
<td></td>
</tr>
<tr>
<td>Pouysegur, Julien</td>
<td>0P</td>
<td></td>
</tr>
<tr>
<td>Prinz, Stefan</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Puffenberger, Kent</td>
<td></td>
<td>0H</td>
</tr>
<tr>
<td>Qu, Chen</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Radier, C.</td>
<td>11, 13</td>
<td></td>
</tr>
<tr>
<td>Rahimi, Zhabiz</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Ramirez-Corral, Cristel Y.</td>
<td>0S, 1S</td>
<td></td>
</tr>
<tr>
<td>Rand, Stephen C.</td>
<td>0C</td>
<td></td>
</tr>
<tr>
<td>Reiser, Axel</td>
<td>0O</td>
<td></td>
</tr>
<tr>
<td>Resan, Bojan</td>
<td>09, 0Y</td>
<td></td>
</tr>
<tr>
<td>Rey, G.</td>
<td>11, 13</td>
<td></td>
</tr>
<tr>
<td>Ricaud, S.</td>
<td>11, 13</td>
<td></td>
</tr>
<tr>
<td>Rohrbacher, Andreas</td>
<td>09, 0Y</td>
<td></td>
</tr>
<tr>
<td>Roides, R.</td>
<td>0N</td>
<td></td>
</tr>
<tr>
<td>Ruehl, Axel</td>
<td>0S</td>
<td></td>
</tr>
<tr>
<td>Rzheutski, M. V.</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Sanghera, J. S.</td>
<td>1T</td>
<td></td>
</tr>
<tr>
<td>Sapkota, G.</td>
<td>1T</td>
<td></td>
</tr>
<tr>
<td>Sasaki, Yoichi</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Sawada, Ryota</td>
<td>1X</td>
<td></td>
</tr>
<tr>
<td>Schad, Sven-Silvius</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Scharun, Michael</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Scholz-Riecke, Sina</td>
<td>0O</td>
<td></td>
</tr>
<tr>
<td>Schultz, Marcel</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Schum, Tom</td>
<td>0H</td>
<td></td>
</tr>
<tr>
<td>Seitz, Daniel</td>
<td>0O</td>
<td></td>
</tr>
<tr>
<td>Sentis, M.</td>
<td>0X</td>
<td></td>
</tr>
<tr>
<td>Seurin, Jean-Francois</td>
<td>0U</td>
<td></td>
</tr>
<tr>
<td>Severová, Patricie</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Shepherd, Dave P.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Shuman, Tim</td>
<td>0H</td>
<td></td>
</tr>
<tr>
<td>Sikocinski, Pawel</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Silva, Alexandre O.</td>
<td>1L</td>
<td></td>
</tr>
<tr>
<td>Simon-Baissin, C.</td>
<td>11, 13</td>
<td></td>
</tr>
<tr>
<td>Škoda, Václav</td>
<td>1F, 1H</td>
<td></td>
</tr>
<tr>
<td>Slobodchikov, Evgeny</td>
<td>03</td>
<td></td>
</tr>
<tr>
<td>Smrž, Martin</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Soujaeff, A.</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Stebbins, Kenneth</td>
<td>0R</td>
<td></td>
</tr>
<tr>
<td>Stiftes, Ronald W.</td>
<td>1O</td>
<td></td>
</tr>
<tr>
<td>Štrístkamp, M.</td>
<td>0I, 0M</td>
<td></td>
</tr>
<tr>
<td>Šuč, Jan</td>
<td>1A, 1B, 1C, 1E, 1F, 1H</td>
<td></td>
</tr>
<tr>
<td>Sutter, Dirk</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Švejkar, Richard</td>
<td>1C</td>
<td></td>
</tr>
<tr>
<td>Tamiya, Mitsuru</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Tanaka, Hiroki</td>
<td>1X</td>
<td></td>
</tr>
<tr>
<td>Tanaka, Satoshi</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Tao, Xutang</td>
<td>0E</td>
<td></td>
</tr>
<tr>
<td>Tcheremiskine, V.</td>
<td>0X</td>
<td></td>
</tr>
<tr>
<td>Tses, Catherine Y.</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Thorne, Daniel H.</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>Toci, Guido</td>
<td>1M, 1N, 1P</td>
<td></td>
</tr>
<tr>
<td>Traub, M.</td>
<td>0M</td>
<td></td>
</tr>
<tr>
<td>Trembath-Reichert, Stephen</td>
<td>0C</td>
<td></td>
</tr>
<tr>
<td>Türčičková, Hana</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Türkylmaz, Erdal</td>
<td>0V</td>
<td></td>
</tr>
<tr>
<td>Unterrainer, Karl</td>
<td>02</td>
<td></td>
</tr>
<tr>
<td>Utěz, O.</td>
<td>0X</td>
<td></td>
</tr>
<tr>
<td>Uttamchandani, D.</td>
<td>1U</td>
<td></td>
</tr>
<tr>
<td>Van Leeuwen, Robert</td>
<td>0U</td>
<td></td>
</tr>
<tr>
<td>Vannini, Matteo</td>
<td>1M, 1N, 1P</td>
<td></td>
</tr>
<tr>
<td>Venus, George</td>
<td>1W</td>
<td></td>
</tr>
<tr>
<td>Vermeilhar, M. V. D.</td>
<td>1K</td>
<td></td>
</tr>
<tr>
<td>Veselský, Karel</td>
<td>1F</td>
<td></td>
</tr>
<tr>
<td>Vetrovec, John</td>
<td>1B, 19</td>
<td></td>
</tr>
<tr>
<td>Wall, Kevin F.</td>
<td>03</td>
<td></td>
</tr>
<tr>
<td>Wang, Qing</td>
<td>0U</td>
<td></td>
</tr>
<tr>
<td>Wu, Baiyi</td>
<td>0E</td>
<td></td>
</tr>
<tr>
<td>Xie, Tengfei</td>
<td>1N</td>
<td></td>
</tr>
<tr>
<td>Xu, Bing</td>
<td>0U</td>
<td></td>
</tr>
<tr>
<td>Xu, Guoyang</td>
<td>0U</td>
<td></td>
</tr>
<tr>
<td>Xuan, Hongwen</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Yablonskii, G. P.</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Yu, Anthony W.</td>
<td>0J</td>
<td></td>
</tr>
<tr>
<td>Yuan, Dongsheng</td>
<td>0E</td>
<td></td>
</tr>
<tr>
<td>Zaouter, Yoann</td>
<td>0P</td>
<td></td>
</tr>
<tr>
<td>Zhao, Zhigang</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Zhou, Delai</td>
<td>0U</td>
<td></td>
</tr>
<tr>
<td>Zuegel, J.</td>
<td>0N</td>
<td></td>
</tr>
<tr>
<td>Zweiback, J.</td>
<td>0N</td>
<td></td>
</tr>
</tbody>
</table>
Conference Committee

Symposium Chairs

Guido Hennig, Daetwyler Graphics AG (Switzerland)
Yongfeng Lu, University of Nebraska-Lincoln (United States)

Symposium Co-chairs

Reinhart Poprawe, Fraunhofer-Institut für Lasertechnik (Germany)
Koji Sugioka, RIKEN (Japan)

Program Track Chair

Bo Gu, Bos Photonics (United States)

Conference Chairs

W. Andrew Clarkson, University of Southampton (United Kingdom)
Ramesh K. Shori, SPAWAR Systems Center (United States)

Conference Program Committee

Patrick A. Berry, Air Force Research Laboratory (United States)
Marc Eichhorn, Institut Franco-Allemand de Recherches de
Saint-Louis (France)
Dennis G. Harris, MIT Lincoln Laboratory (United States)
Norman Hodgson, Coherent, Inc. (United States)
Helena Jelinková, Czech Technical University in Prague
(Czech Republic)
Christian Kränkel, Universität Hamburg (Germany)
Jacob I. Mackenzie, University of Southampton (United Kingdom)
Markus Pollnau, KTH Royal Institute of Technology (Sweden)
Narasimha S. Prasad, NASA Langley Research Center (United States)
Bojan Resan, Lumentum Operations LLC (Switzerland) and University
of Applied Sciences and Arts Northwestern (Switzerland)
Deyuan Shen, Fudan University (China)
Matteo Vannini, Istituto Nazionale di Ottica, CNR (Italy)

Session Chairs

1 Eyesafe and Mid-IR Lasers I
 Patrick A. Berry, Air Force Research Laboratory (United States)
2 Eyesafe and Mid-IR Lasers II
Patrick A. Berry, Air Force Research Laboratory (United States)

3 Single Crystal Fiber Lasers
Ramesh K. Shori, SPAWAR Systems Center (United States)

4 Airborne and Space Qualified Lasers
Ramesh K. Shori, SPAWAR Systems Center (United States)

5 Pulsed Lasers I
Helena Jelinková, Czech Technical University in Prague
(Czech Republic)

6 Pulsed Lasers II
W. Andrew Clarkson, University of Southampton (United Kingdom)

7 Ultrafast Lasers
Bojan Resan, Lumentum Operations LLC (Switzerland)

8 Disk Lasers
Marc Eichhorn, Institut Franco-Allemand de Recherches de Saint-Louis (France)

9 Laser Materials and Characterization
Dennis G. Harris, MIT Lincoln Laboratory (United States)

10 Novel Concepts I
Bojan Resan, Lumentum Operations LLC (Switzerland)

11 Novel Concepts II
Narasimha S. Prasad, NASA Langley Research Center (United States)

12 UV and VIS Lasers
Narasimha S. Prasad, NASA Langley Research Center (United States)