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Abstract

We discuss measurement of properties in digitised images. We give an
overview of the most accurate as well as practical feature estimation meth-
ods, particularly of geometry measurement on straight lines and circular
arcs. The theory offered here gives an upper bound to the accuracy of
measurement and characterisation of any figure due to digitisation.

1 INTRODUCTION

In this paper we consider the task of measurement. Even here, the vision task
can in most cases not be seen independently of its context. For intensity value
measurement, the trustworthiness of the result is determined by the quality of
the sensor and by the success in segmenting the target. For the measurement of
texture, loosely defined as the interplay of geometry and intensity value patterns,
the definition of features is not physically motivated, and hence no universal
definition exists. In fact, texture is a context specific, purposeful property of an
object’s picture. Few references are known on the effect of the digital grid on
texture measurement. This can be understood from the problem specific use of
texture, for example [11]. Texture is not discussed here.

Measurement of geometry has a context free definition, apart from murky
details such as the fractal character of a coast line. Length, curvature, area and
related features have a unique and universal definition in the continuous world.
In this paper, we discuss the fundamental bounds which arise when going from
the idealised continuous world to the digital world.

In this communication we limit ourselves to context free measurement of
image properties of noise free images. We aim at formulating bounds in the
accuracy of measurement due to the digitization.
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2 TO MEASURE DIGITISED FIGURES

When measuring from a digitised figure, the ground truth is in the continuous
measurement from the continuous figure, i.e. the figure before it is digitised.
The task at hand is to design a digital measurement method working on the
digitised figure in such a way that the outcome approximates the continuous
measurement as faithfully as the digitisation permits.
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Figure 1: Measurement of digitised figures: the general scheme. Note that
digitisation plus subsequent characterisation induce equivalence classes of object
which cannot be discriminated by digital measurement.

In figure 1 the principle of digital measurement is laid down. A continuous
figure S which may have infinitely many shapes and forms is measured in one of
its properties. Usually, for geometrical properties such as length, curvature, and
various shape criteria, the spectrum of outcomes is continuous; the measurement
of the property can assume many values.

Due to the digitisation a pattern P of digital points arises, representative
for the continuous figure. The complement of P is pattern P*, the set of pixels
excluded from the digitized figure. In the history of digital image processing
it took some time to realise that any geometry is a collection of points rather
than the lines or squares connecting them. The immediate consequence is that
in the digital world there is no natural definition of spatial coherence, but that
connectivity is a computational choice. If the choice is 8-connectivity for P, then
P* must be 4- connected to provide topological consistency. In the hexagonal
grid the connectivity of figure and background is 6 both, and this is the reason
why it has been advocated in the early days, mostly by Serra. However, the
generalisation to the 3D-grid has silenced the call for the 'natural’ hexagonal
grid, as it is technically more cumbersome to generate sensors, displays and



basic computational algorithms. Square grids or at least rectangular grids are
the only ones to survive today. We will conceive of connectivity as the subset
of the P; included by the digitisation, and the complement P} excluded from
the digitisation.

The digitisation induces a partitioning in the set of continuous figures. Some
figures, very similar to one another, have the same digital pattern P; and hence
P;. The set of continuous figures inducing the same pattern P; is called the
locale R; [12]. A useful representation of R is found by a (generalised) Hough-
transformation of the spatial domain into a parameter-domain. The transfor-
mation let a standard shape S be represented by a point. The edges of R; in
parameter space are the mapping of the grid points; an illustration will follow
for the straight line and circular case.

Given the digitisation the contour of the figure is decomposed into seg-
ments of standard shape. In this paper we limit ourselves to decomposition
into straight line segments or circular arcs. In the sequel we give examples of
decomposition algorithms for that purpose.

Once the digital pattern is decomposed, we characterise the pattern P; by
a tuple of parameters. A characterisation C; is a parameter representation of
P; such that one or more patterns P; are mapped onto one value of C;. As a
consequence, the locale R¢, encompasses the locales of one or more digitisation
patterns Rp,. The characterisation C; is said to be complete when there is a
one-to-one mapping between C; and P;. If the characterisation is incomplete,
information about the precise shape and position of the continuous figure is
lost (in addition to the information loss at the digitization). Most practical
computer measurement algorithms have such an information loss as an effect,
mostly because the characterisation is easy to compute. We will discuss com-
plete characterisation schemes as well as several easy to compute incomplete
characterisation schemes.

Usually, finding a characterisation is specific for the basic figure: a line or
a circle. In the sequel we consider them, and the analysis is remarkably differ-
ent. Veelaert [22] has presented a scheme for the characterisation of arbitrary
bounding curves by sets of equations of inequality, one to each point of the grid.

From the point of measurement of the property, the most precise character-
isation is the complete characterisation. This bound due to digitisation induces
a bound in the digital measurement accuracy. It is the deterministic equivalent
of the Cramér/Rao bound known from stochastic parameter estimation theory.
For each pattern P;, only one estimate § of the property at hand can be as-
signed. As the true value of the property g varies over the corresponding locale
R;, an uncertainty is unavoidably introduced. This is quantified in the domain
variance [28]:

Vi(R) = [ B(SIPIGR) - o(S)7ds, M

where p(S/P;) is the probability density that the continuous figure S has lead
to pattern P;. We seek the estimator §m,(P;) minimising the domain variance:

Gmo(P;) = arg mginV;,(PQ (2)



The solution is equal to the expectation of g over R;.
ami(P) = [ 2(5/P)g(S)dS 3)

For a proof see the reference. As the domain variance is a deterministic measure,
the domain variance of g, is the minimal variance one can reach for any possible
estimator: the geometric minimum variance bound, GMVB:

G4(Pi) = V5,0, (B3) 4)

The bound quantifies the ability of the pattern P; to discriminate among vari-
ations in the property of the continuous figures. It expresses the maximum
achievable precision in property estimation after digitisation.

To actually compute an unbiased, minimum variance estimate of a prop-
erty consider the moment generating function for g depending on parameters
describing the set of all continuous figures s:

Ti(P) = /S B(s/P:)g'(s)ds, 5)

where the function p(s/P;) is proportional to the conditional probability func-
tion of figure s given P;. Now:

1(p.
melP) = 750 ©)

and
TXP) TP
Go(P) = 7o(E) ~ To (R ™

3 STRAIGHT LINES AND THE GRID

3.1 Digitisation
The digitisation of a straight line S; : y = az + e is a pattern P; of pixels with:

(zi, laz; +€]) (8)

In this z; is at integer, grid column, positions. This definition of digitisation is
known as the 8-connected object boundary quantization. The 4-connected or
the 6-connected grid will create an identical structure, see [25]. The digitisation
scheme renders the pixels on and just below the line. The pixels just above the
line are in P*. In the sequel we only consider lines in the first octant of the
grid. The rest follows by symmetry.

The digitisation pattern may be coded by assigning 0 for each displacement
in the positive z-direction of the grid, and 1 for each displacement in the diagonal
direction. A string is said to be straight iff there exists a straight continuous
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Figure 2: (a) Regular grid of pixels in the spatial domain for string P; = 00100,
represented by filled pixels. Open pixels are in the complement P*. (b) Same
figure, shown in (e, a)-domain, first octant.

Figure 3: The code string 11010 and 10101 on the grid. The locale Rjj010 is a
triangle in the (e, @)-domain and a diamond for Rjoi01, see figure 2.



line from whom it could have been generated by digitisation. An example of
a straight string is 10100101, whereas an example of a non-straight string is
11110000.

The locale R; of P; is bounded by lines with maximum and minimum slope
just bouncing against the extreme grid points in P; and P;. In general, there are
4 such lines. We consider locales in the (e, @)-domain which is the generalised
Hough transform of a line to its parameters [25]:

yi=or;te<s=e=—z;0+y; (9)

In that domain, the locales have no more than two different shapes. In
principle we expect them to be diamond shaped bounded by 4 edges, one to
each of the 4 limiting grid points. Invariably, the points to the East and to the
West share the same value of a. For this value, a,,, the diamond is at its widest.
It indicates the value of @ where the continuous line can be shifted up and down
with maximum degree of freedom in e while still generating the same code, see
figure 3. The degeneration of a diamond is a triangle. They are oriented in such
a way that one point of the triangle holds the middle value of a, with a = a,,.

=

Figure 4: Regular grid of 7x7 pixels in (e, a)-domain, first octant shown.

If we compare in the (e, a)-domain a grid of 6 x 6 pixels to an extended
grid of 7 x 7 pixels, we make two observations. First, it can be seen that the
newly added lines in (e, )-domain cut existing locales into one diamond and
one triangle. The Rjgo10 is cut into a diamond for 100100 and a triangle for
100101. This can be explained later on from the fact that a straight extension
to the existing string one has an established periodicity and the other one just
became a-periodic. Secondly, not all locales are affected by the extension. The
shape of Rpj0110 is identical to the shape of Rg1011. This can only happen when
the alternative extension, 010111, is absent due to the fact that the string no
longer constitutes a straight string.



A string P, or a digitisation pattern for that matter, is said to be periodic
when a substring P,, the period, in P can be identified such that P contains
repetitions of P, and no other elements. A string P is said to be quasi-periodic
when substring P, can be identified such that a tail-end of P, added to the head
of P, and a head-end of P; added to the tail of P will turn P into a periodic
string. When there is a choice, we select as P, the shortest string. The string
P = 10100101010 is a quasi-periodic string as a substring P, = 0010101 can be
identified of which head-end 0010 and tail-end 010101 turn P into the periodic
string 0010— 10100101010— 010101. Even a-periodic strings such as 10001001
can be quasi-periodic as in this case P, is 0001001.

3.2 Decomposition

To verify whether a string is a straight string was first considered by Brons [6]
in narrative terms. These linearity conditions were formulated more precisely
by Wu as follows [29]:

Start at P?=° = P;:

4
Number of different symbols in P? > 2? Stop, not a straight string.
Number of different symbols in P? = 1? Stop, straight string.

4

Do the symbols in P¢ differ by one? No: Stop, not a straight string.
I

Does one of them occur singly? No: Stop, not a straight string.
4

Does the symbol occurring singly appear once? Yes: Stop, straight string.

Compute the string P! of run lengths between two minority codes of PZ.
Is the first element of P! > max(P#*1), or,
is the last element of P#*! > max(P?*')? No: Stop, not a straight string.

Is the first element of PZ+! < max(PZ*?)? Yes: Remove the first element from PZ*!.
Is the last element of Pf’“ < max(PZ*1)? Yes: Remove the last element from P,

4
Loop back to the beginning and verify

Pid+l.
By looping through the conditions one establishes the condition of straight-
ness. The multi-level testing is needed as not any string with 0’s and 1’s is
straight. Obviously 000001111 is not a straight string. Also 000100101 is not a
straight string as the string on the next level of consideration is 432 containing
more than two elements which in addition differ more than 1 in value. Finally,
010101001010100101001 is not a straight string. Where it appears to be straight
on the second level 222322323, it is not on the second level, 432.

A more interesting question is the straightness of a growing string. For
example, when an arbitrary digitisation pattern is followed, how to decompose
the string in segments of maximum length while each segment is straight still?



To that end, several algorithms have been designed.

Lindenbaum [15] considers a string ,P of n-elements. Then he checks
what the locale ,R of ,P is and compares this with ,_; R of string ,—1 P. Iff
nR Cn—1 R then , P is a straight extension of ,_; P.

In an algorithm described in [20] the tests of Wu are verified sequentially
while book keeping the essential string parameters at each level. At each new
level the incoming element is verified against the minority and majority value at
that level, until one reaches the highest level where the minority value has not
been defined yet. So the algorithm in the reference stores all relevant information
on the growing string. For each level d: the value of the majority element My,
the value of the minority element mgy, the value of the initial element 74 only
kept for completeness, and, the value of the current, running element r4. As an
example, for string Pf’ = 0101010010101001010 the My =0, mg = 1 and rp = 0.
At leveld =1, M; = 2, m; =3 and r; = 1, a summary of P} =22232232. At
level d = 2, P? = 431 with M> =4, my =3 and 72 = 1, or M = 3, m2 = 4 and
o = 1 as it has not been decided yet which is the minority element and which
one is the majority one. The running element of level d forms an element at
one level higher when r4 equals m4. Checking will proceed to one level higher
only when r4 reaches this value. That is why, for most elements, the checking
for straightness will not pass beyond level 1 or 2. Only where minority elements
at all levels coincide the depth of iteration over the levels is fully needed. The
algorithm is proved in the reference with estimates for its complexity.

A geometrical interpretation of this string testing scheme follows from run-
ning down a straight string. Running down a string implies that the size of
the grid is expanded by one column, see figure 2. In the (e, a)-domain this is
a transition into figure 4. For string , P, found to be straight so far, the effect
on its locale 41 R is that the line corresponding to the new grid column cuts
R into two, or that , R is left unchanged: ,+;R =, R . If .41 R is unchanged
there is no need to check the boundaries of the R, hence no recursion on the
levels is needed.

3.3 Characterisation

A straight string can be completely characterised by 4 integer parameters (N, p, g, s),
where N is the number of codes in the string equal to the number of points on
the grid minus 1. The s is a phase factor indicating the position in the string
where the first P, starts. In fact, s plays a marginal role in any computation.
The parameters ¢ and p are the length of period P, and the number of minority
elements therein, respectively. The period P, has been brought in standard
form such that it always starts with all majority elements first and is concluded
by the minority element. The value of the most prevailing a where the locale is
at its widest has value o, = g. For a proof, see [7].

The boldest characterisation is to reduce the information in the pattern of
P and count the number of codes, C = (IV), equal to the number of digitisation
points in the string minus 1. That boils down to taking all locales together and
integrating over all of the area in the (e, a)- domain.
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Figure 5: (a) Points of interest in the characterisation by (V) in the spatial
domain and the corresponding locale in (e, a)-domain. (b) Characterisation
by (No,N1). (c) Characterisation by (Np, N;, N.). (d) Characterisation by

(N,p,q,s).



A straight string can also be characterised by the parameters C = (Ng, V)
being the number of codes in horizontal and vertical direction, and the number
of codes in diagonal direction. This characterisation, in fact, determines at
which position the string exits the grid. Each point in the exit column of grid
points now generates a different value of the characterisation.

A final characterisation of the string is by adding as a third parameter the
number of changes between a diagonal and a non-diagonal code. The character-
ising tuple in this case is C = (Ng, N1, N.). For example, Cn, n;,n. = (3,2,3).

3.4 Measurement of properties: example length

When considering measurement of say the length, £, of a line, even today many
text books write:
£= No+ V2N, (10)

If anything, this is the length of the broken line connecting the digital points,
definitely not a proper estimate for the length of the continuous line before it
was digitised.

For proper measurement, the function we need to include is the probability
of the lines. Rather than considering a uniform distribution in (e, @), it is better
to do so in the parameters of the normal representation as that corresponds to
tossing lines randomly on a co-ordinate system. The density function of the
probability of a line with (e, ) can be found by a co- ordinate transformation.
It yields [8]:

ple,) =c(l+0a”)7% (11)

with ¢ follows from normalisation. This would yield ¢ = v/2, but as the locales
of the digitised lines are diamond shaped rather than square it holds that,

1
VR 1-n+ V2P 2n 41 - (nv2 + 1V2)

After extensive calculations, Beckers [3] gives the probability density function
for lines in 3D.

Once p(8) is known, equation 4 can be evaluated for each different character-
isation. The most accurate result is found for the complete characterisation, in
the case of straight lines given by the tuple (NV,p, g,s). They have been derived
in [8] in mathematical expressions and tabulated form for length and orienta-
tion. No analytic solution is known, however, and even the Taylor expansions
take more length than is available here.

So, as it is unpractical to use the locales for each digitisation pattern P, we
turn to the use of characterisation C; of P;. Computing the unbiased length
estimate for the (V)-characterisation, one finds:

(12)

£=1.111N, (13)

The residual error when considering a line of random orientation with respect
to the grid is computed as 11.2%. That percentage is the difference between
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the length of the original line and the outcome averaged over all orientations.
The formula implies that counting the number of edge points and taking that
for the length gives a bias of 11.1%.

The characterisation by (No, N1), gives as its best length:

£ =0.945N, + 1.346 N, (14)

an equation closely resembling Kulpa [13]. The residual error when considering
a line of random orientation with respect to the grid is computer as 2.6%. The
formula was found in slightly different form by Profitt and Rosen [18].

Note that computing the distance between the discrete begin and end point
of a straight line also employs the same characterisation. Only the length esti-
mator is different:

£=1/(No + N1)? + N7 (15)

This formula is due to Pythagoras [19]. It is cited here to stipulate that (1) the
above counting formulae are linear in the amount of steps rather than quadratic,
and (2) in the digital world measuring length is not the same as establishing
distance between end points. For the latter, one cannot do better than the
Pythagorian formula, whereas for the measurement of length one can do better
by taking into account the configuration of points in between.

The characterisation by (Ny, N1, N.) is much finer than the previous two.
The resulting unbiased estimate is given by:

£ = 0.980N, + 1.406 N; — 0.091N, (16)

with residual error of 0.8% [25].
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Figure 6: The accuracy of length estimators in 2D. From [9].

In the figure 6 the accuracy of each of the length estimators is displayed
for varying length of the string. A few observations can be made. (1) The
accuracy of the linear estimates based on the (IV), (Np, N7) or (N, Ny, Ne)
characterisations levels off for increasing values of N. No matter how dense
the figure is sampled, the same accuracy will result. This is due to the bias
depending on the direction of the figure to the grid. (2) The accuracy of the
squared estimator increases quadratically as expected for the continuous case.
(3) The accuracy of the most precise characterisation falls off with a greater



accuracy than the Pythagorian equation. The digital grid helps confining the
set of continuous figures.

The topic of measurement of properties from a linear characterisation has
been extensively studied, each author contributing his own case. Mulliken gives
an unbiased estimate for computing the surface in 3D [17]. Beckers contributes
unbiased estimates for the length in 3D [4]. Verwer [24] gives a numerical
evaluation for length estimates in any dimension.

4 CIRCLES AND THE GRID

4.1 Digitisation

We now turn to circular figures [28]. Again, let S represent a continuous figure.
Given the digitised pattern P; derived of S. The approach is to identify the
set S of all continuous circular arcs which share P; as their digitisation pat-
tern, see figure 7. The continuous figures S are represented by a point each in
the parameter space (zar,ynm,7), yielding the centre positions and radii. The
transform between the spatial representation of the figure and the parameter
representation is the three dimensional generalised Hough transform:

(E—zm)+@-ym)? -r’=0<= @en -2 +@yn—-y)*-r*=0 (17)

o o o o °
o o o o
o o
o o
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Figure 7: (a) A digitisation pattern P; as it originates of some (unknown) con-
tinuous circular arc S. (b) The parameter space for circles shown for fixed r.
Indicated are the boundaries of the locales, images of the points of the grid.

Varying the parameters of (zar,yar,7) one finds bounds beyond which the
parameter cannot be changed without alterations to the digitisation pattern P;.
Figure 8 gives an example of the bounding circles of a fixed radius of P; and of
Pr.

In P; or P’ not all pixels matter in finding the extent of R;. Some of the

pixels in these two sets will not be part of the set of bounding pixels, not for
any value of 7. Some of the pixels in these sets will be part of the bounding



14

Figure 8: The locale for fixed radius in (zar, yar)-space.

pixels. Occasionally, some pixels of P; or P will be part of the bounding set of
pixels for all .

In (zar,ym,)-space, for fixed v’ a pixel P, in the grid transforms to a circle
with radius r’' centred around (zp = zp,,ym = yp,)- That circles constitutes
the set of all centre points in the spatial domain of which the circle will pass
through P;. Hence, as pixels of the grid bound the circles fitting between the
pixel set P; on the inside and P;* on the outside must be bounded in parameter
space by circular arcs. For fixed ' , the locale R;(r') cut out by digital pattern P;
is one (or more) polygon(s), curved in its edges with radius r'. Each pixel in P;
corresponds to one convex edge in R(r'), whereas each pixel in P corresponds
to one concave edge in R;(r'), and there are no other edges in R;(r'). Vertices in
R;(r') are determined by two points of {P;, P’}. The combination of all R;(r)
while varying r gives a three dimensional, connected structure R;. The example
in figure 9 gives rise to the following curved edged polygons:

r | which points determine R;(r)
00.0 1]
16.8 Do, P3, P2
17.0 Do, P3,P2,P1
18.5 Po,P3,P1,P2,P1
19.7 Po,P3,P1,P2,P5,P1
20.2 POyPI;PZ:PE;Pl
22,5 Po; P1> P2, P1
25.5 Po, P1,P3
31.6 9

In the reference, a precise account is given for all transitions in the edges
of R;(r) while increasing r following the properties of the - hull [27]. It ap-
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Figure 9: The projection of R;(r) onto the (s, yar)-plane is a Voronoi diagram.
(Elements of P; indicated by g¢;.)

pears that there is a limited number of cases which occur, corresponding to
the configuration of bounding pixels points. The projection of R;(r) onto the
(zam,ynm)-plane is the generalised Voronoi polygon.

4.2 Decomposition in curves

Sofar, no use has been made of the properties peculiar to the regular grid. We
just considered point sets P; included in the digitisation, and P;* excluded by the
digitisation. On a regular grid, there are six different shapes for the projection
of R; on the (zar,yar) plane. They can be classified as straight, strictly convex,
infinitely convex, strictly concave, infinitely concave or non-circular. Each of
the cases is illustrated by an example in figure 10. The decomposition of an

SNV

N

2133 : stricily convex 2132 : infinite convex 2100 : strictly concave

° o
° °
° 0 ° °
° ° °
o ° ‘ o
2110:: infinitc concave 2122 : straight 2113 : non circular

Figure 10: Examples for each of the 6 different shapes of the projection of R;
on the (zpr,ya) plane on a regular grid. From [28].
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arbitray string Oy P; of length N can be done by checking whether the locales
~NR; has a non-zero intersection with y_1 R;.

4.3 Characterisation and measurement of curves

In literature no methods of characterisation are known, apart from the complete
characterisation of a circle given above. Usually characterisation and measure-
ment is done is one pass. For the estimation of the position and radius of curves
of the digitised boundary, five methods were compared in [26]. It turned out
that none of the methods yields accurate and precise estimates of curvature. A
theoretical analysis of the methods revealed a number of clues for the poor per-
formance. In [16] the curvature is estimated by applying a linear differentiating
filter to the z- and y-co-ordinate separately. For circular arcs this separation,
overlooking the 2D-nature of the problem, introduces significant errors due to
the truncation of the filter. Some methods [1, 2, 10] find curvature by applying
a linear differentiating filter to the estimated orientation. The method in [10] is
the only method which explicitly takes the anisotropy of the grid into account
and in fact with proper scaling yields the best performance. In the other cases
errors in the order of 40% are common. Fitting a circular arc to the digital data
does take the two dimensional shape of the digital boundary into account and
algorithms can be found in [5, 14, 21]. It turned out that for noise free digitised
circular arcs the precision is poor.

The best possible estimate is given by application of equation 4 in combina-
tion with the complete characterisation derived above. Results are given in [28],
but only for small sampled sets in tabularized form. The results are illustrated
in figure 11 by sketching the probability density function for this R; as well as
the result.

p(r/S)

(b) 3 >
p(rlS)

(a)

© @ >

Figure 11: The edge of two patterns 8P, and their probability density function
of the circles, with best estimate for the radius. From [28].

Based on the 6 different classes of patterns one can compute the maximally



recognizable radius rmin(N) as a function of N, the number of points in 9F;.
This value is the bound on the radius of continuous arcs one can estimate for
each N. In effect, this provides a sampling theorem for curvature measurement.
Practical bounds on the precision in measuring curvature indicate the relative
deviation in the digitization limited optimal measurement of arcs with r < 6
grid units, using a window of N = 10 elements in 8P; is between 2% and
9%. For chains of 9 elements, a table for 8P; configurations can be formed of
approximately 4500 entries. All other 33 million configurations of 10 pixels do
not represent a circular arc. For digitizations of full disks, with varying IV, the
deviation is below 1% for r > 4 grid units.

As concerns the measurement of length, remarkably enough, the accuracy
of the linear estimators in equations 13, 14, and 186, straight lines are worst
compared to other possible curves. For any arc other than the straight line,
the error in estimating its length is less than the straight case using the above
formula (which have been optimised for straight lines!). This is due to the fact
that an arc contains several values of @ and hence compensates for the bias. As
a consequence, for circular arcs approaching 22°, the error in the length estimate
even drops to 0 [9]. It makes the (Np, N7, N.)-estimator a good candidate for
measuring length of arbitrarily shaped curves.

5 TO MEASURE IDEAL BLACK/WHITE

Whereas length and other parameters of figures cannot be measured without
loss of information from the digitized images we discussed so far, Van Vliet
and Verbeek [23] have established error free measures in idealized recordings of
continuous of black and white images. They start from Nyquist sampling and
observe that the ideal black and white image will be transposed by the scanner
into a grey valued image. Then, from this band limited image, taking the profile
of the figure edge into account and knowing the transfer characteristic of the
scanner, they derive estimates for iso-intensity curves of length, surface and
curvature. These measures derived from ideally scanned grey value images are
more accurate than the ones above with errors descending down to 0%.

6 DISCUSSION

The paper emphasizes the following points.

First of all, it took a long time to realise that establishing length in the digital
world is a estimation problem with a limited accuracy more than anything else.
Even where geometry is uniquely defined continuously or digitally, the outcome
in a digital world can only be known with limited accuracy.

Secondly, measuring geometry from a digitized figure should not be done
simply by filling in discrete parameters in the formulae of the continuous domain.
The selection of the proper parameters to characterise such standard shapes as
lines and circles resulting from digitisation is a non-trivial part of the process
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to find estimators with optimal accuracy. An analysis is required in which way
the proper parameters depend on the characterising parameters of the grid.

Thirdly, another way of saying is, that for noise free measurement the
Cramér/Rao bound for a bound on the accuracy of continuous parameter es-
timation is not appropriate here. Instead, we derive the Geometric Minimum
Variance Bound. We have shown the limited sets of pixels of the grid which
are decisive in the ultimate accuracy of geometry measurement. In the case of
straight these are 4 (or by coincidence 3) pixels, whereas in the case of circles
this number may go up to infinity, be it that for the minimum radius smaller
circles usually 4 or 5 pixels are sufficient.

. Fourth, when measurement is not restricted to what is found in the (binary)
image but the quality of the sensor is included in the analysis, the work by Van
Vliet and Verbeek on grey-valued images gives a way to measure geometry with
arbitrary accuracy.
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