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ABSTRACT

The research employs EEG in combination with the 1DCNN-LSTM algorithm for the purposes of identifying and
classifying people with varying risks of schizophrenia. This collection of data for schizophrenia's high-risk and low-risk
groups comprises EEG signals from 98 people, the division was made between a group of 50 with normal EEG signals
and another group of 48 with high-risk indicators for schizophrenia. The duration of measurement for every participant
stood at 12 minutes. The data set was processed in advance, encompassing tasks like channel exclusion, re-referencing,
dividing the dataset, performing independent component analysis (ICA), windowing, normalizing, and segregating it into
the testing, training, and validation sets. Subsequently, the processed EEG data was integrated into the 1DCNN-LSTM
classification model, where post-extensive learning, the model's weights were derived. The categorization system
attained a 94.26% precision rate in the identification of the complete-channel EEG data collection. This research utilized
the 1DCNN-LSTM algorithm to classify and identify high-risk and low-risk groups for schizophrenia, showcasing an
adequate recognition capability that satisfies real-world application criteria. The system precisely categorizes populations
at varying risk levels for schizophrenia through comprehensive EEG data, thus facilitating precise schizophrenia
detection and offering prompt diagnosis and treatment for those at high risk for the condition.
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1. INTRODUCTION
Schizophrenia is a severe mental illness characterized by hallucinations, delusions, and mental disorders [1].
Schizophrenia is a serious mental disorder with serious health effects [2]. Accurate and objective identification is crucial
for the treatment and intervention of patients. While our understanding of schizophrenia still has many limitations,
algorithms and techniques can be used to predict the probability of developing schizophrenia, identify at-risk populations,
and intervene in the early stages of the disease. Early intervention can help patients better manage symptoms, improve
social skills, increase confidence and self-esteem, and adapt more effectively to life and work. Therefore, it is
particularly important to research and develop algorithms and techniques to identify people at high risk of schizophrenia.

To accurately diagnose schizophrenia, researchers utilized characteristics such as total gray matter loss in the brains of
schizophrenia patients over the past decade. They used MRI and fMRI imaging to distinguish the brains of healthy and
schizophrenic patients, and used functional magnetic resonance imaging (fMRI) datasets to train deep learning models to
schizophrenia diagnosis [3-15]. However, due to the existence of motion artifacts, imaging equipment is costly and the
image fusion quality of different devices is poor, presenting a challenge to image fusion [16].

With the development of electroencephalogram (EEG) analysis techniques, they have also been employed in
schizophrenia research [17-19]. EEG analysis involves electrodes being placed on the scalp to record the electrical
activity of neurons in the brain, which are then analyzed by data analysis techniques to extract information about brain
activity. Since 2018, the application of deep learning algorithms in EEG analysis has been at research frontier of
schizophrenia analysis. Many researchers have combined EEG analysis techniques with deep learning algorithms to
identify schizophrenia patients [20-29], with promising classification accuracy. The 1DCNN-LSTM algorithm was used
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to study people at high risk of schizophrenia and people at low risk. The classification of people at high risk of
schizophrenia and those at low risk is of great significance for the treatment and rehabilitation of schizophrenia.

2. EEG SIGNAL DATASET AND ITS PREPROCESSING
The high-risk population dataset for schizophrenia used in this study collected EEG signal data from 126 individuals.
Invalid data from 38 individuals, caused by various reasons during the data collection process, were excluded. The
remaining dataset consists of EEG signal data from 98 individuals, including 48 individuals from the high-risk
population for schizophrenia and 50 individuals from the low-risk population for schizophrenia. The data was sampled at
a frequency of 1000Hz.

As shown in Figure 1, the preprocessing of the dataset includes channel rejection, re-referencing, data segmentation, ICA,
windowing, normalization, Dataset Splitting. Channel rejection, re-referencing, data segmentation, and ICA were
performed using the EEGLab toolbox in MATLAB software. Windowing, normalization, Dataset Splitting were
performed on the MATLAB platform. The normalization process involved the assistance of Jupyter for certain tasks.

Figure 1. Data Preprocessing Workflow.

2.1 Channel rejection, re-referencing, data segmentation, and independent component analysis (ICA)

Channel Rejection: As shown in Figure 2, the EEG dataset consists of a total of 66 channels. And the figure below shows
the distribution of EEG electrodes, where each electrode corresponds to a channel. Among these channels, two channels
capture horizontal eye movement signals and vertical eye movement signals. Both of these signals are caused by eye
movements and not generated by brain activity. Therefore, it is necessary to first remove the eye movement signals.

Figure 2. Distribution of EEG Electrode Channels.

Re-referencing: The values obtained from EEG data collection do not have a specific unit of measurement. Essentially,
they represent electrical potentials. However, there are variations in electrical conductivity among different individuals,
and there is no standardized reference. The purpose of re-referencing is to eliminate the effects of individual differences
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and address common-mode interference. In EEG signal re-referencing, a reference point is selected, and the differentials
of the data can be obtained. In this study, the M2 channel, specifically the mastoid EEG signal, was chosen as the
reference point. This channel is located away from the cerebral cortex and is relatively stable.

Independent Component Analysis (ICA): Independent Component Analysis is an abbreviation for Independent
Component Analysis. It is used to remove artifacts such as eye movement and muscle activity from the EEG signals, by
decomposing mixed signals into multiple mutually independent components. For example, the sample data consists of

},{ 21 n  , which represents n mixed signals. And },{ n21   represents a vector of n
independent and non-interfering signals in the ideal state. In order to extract independent component data from the
sample data, it is necessary to pass through a mixing matrix. As shown in formula 1:

 -1

(1)

The key to obtaining independent component data lies to adjust the mixing matrix. The ICA algorithm can approximate
the ideal hybrid matrix. There are various ICA algorithms, and the algorithm selected in this paper is FasICA, which is
implemented using the pop_runica function in EEG Lab. Based on the maximum non-Gaussianity, the algorithm has the
advantages of fast operation speed, fast convergence speed, good stability and easy realization.

2.2 Windowing, normalization, dataset splitting

Windowing: Divides input data into periodic segments using a specific time window. This process involves partitioning
relatively long time series into shorter segments. In this study, a one-second window was used. Windowing can help
reduce computational complexity, improve the model's local perception ability, increase the number of data samples, and
mitigate overfitting problems.

Normalization: Because the range and distribution of data sets are often not ideal, significant differences between data
points can affect training speed, convergence rate and generalization ability. Therefore, there is a need to normalize data,
which involves scaling the value range of a dataset to a specific range. There are several normalization methods, such as
Min-Max normalization, Z fraction normalization and mean variance normalization. In this study, a Min-Max
normalization method was used, which scales the data down to [0, 1]. As shown in formula 2:
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Dataset Splitting: In machine learning, the division of data into training, validation, and test sets is essential. The training
set is used for model training, the test set is used for evaluating the model's performance, and the validation set is used
for optimizing the model during the training process. In this study, experiments were conducted on both the 63-channel
full dataset and the commonly used 3-channel dataset for eyes-open, eyes-closed, and combined "eyes-open & eyes-
closed" data.

After the previous data preprocessing steps, the obtained dataset for eyes-open, eyes-closed, and combined "eyes-open &
eyes-closed" data has the following channel-wise sample counts: 70364, 70364, and 140728, respectively. Each sample
contains 1 second of data. For dataset splitting, 60% of the data is allocated as the training set, 15% as the validation set,
and 25% as the test set. The dataset splitting is performed using random sampling, where each sample is chosen with an
equal probability. The samples are independent and not mutually exclusive, ensuring a reduced sample bias and
improving the representativeness and reliability of the dataset. This approach guarantees the rationality of the recognition
results.

3. ALGORITHM INTRODUCTION
After the data preprocessing stage, this study's recognition algorithm employed a combined 1D CNN (Convolutional
Neural Network) model and LSTM (Long Short-Term Memory) model known as the 1D CNN-LSTM model. The 1D
CNN model and LSTM model are two commonly used and well-established models in the field of deep learning.
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3.1 1DCNN algorithm

The main feature of Convolutional Neural Networks (CNNs) lies in the first words: convolution. CNNs typically consist
of an input layer, convolutional layers, activation function layers, pooling layers, normalization layers, and fully
connected layers. They are commonly used to process data such as images, videos, and audio. 1DCNN is a type of
Convolutional Neural Network that excels in time series classification tasks. It inherits the convolutional nature of CNNs
but is specifically designed to handle one-dimensional sequential data. It has proven to be highly effective in the field of
time series classification.

Figure 3. The schematic diagrams for the 1D Convolutional Layer and the Max Pooling Layer.

When performing convolutional operations in 1DCNN, the convolutional kernel convolves only in one dimension, hence
the name "1D Convolutional Neural Network". As shown in Figure 3, the 1D convolution starts from the position of the
rectangular box in the top left corner and moves downwards with a specified stride until it reaches the bottom left
rectangle. This process is repeated across the input data to compute the convolved features. The max pooling layer, on
the other hand, operates independently on each feature map or channel, selecting the maximum value within non-
overlapping regions.

3.2 LSTM algorithm

LSTM is a recursive neural network initially proposed by Hochreiter & Schmidhuber in 1997. Over the years, it has
made some advancements and has evolved into a comprehensive and well-developed framework. LSTM aims to address
the limitations of traditional RNNs by introducing memory and forgetting mechanisms to improve learning and capture
long-term dependencies. As a deep learning network, LSTM is widely used in various fields, thanks to its ability to
model continuous data and process long-term dependencies.

As shown in Figure 4, LSTM consists of an input gate, a forgotten gate, an output gate, and a memory unit. The input
gate controls the flow of new information into the storage unit. Oblivion Gate regulates the flow of old information from
memory units. The output gate controls the flow of output information from the storage unit. Memory cells store and
maintain state information for input sequences.
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Figure 4. LSTM Algorithm Structure Diagram

The specific formulas for the input gate, forget gate, output gate, and memory cell in LSTM are as shown in formula 3-6:

)(: 1 ihitxitt bwhwxiInputGate   (3)

)(: 1 ohotxott bwhwxoForgetGate   (4)

)(: 1 fftxftt bwhwxfOutputGate  
(5)

)(t: 1 chctxctt bwhwxanhCMemoryCell   (6)

4. IDENTIFICATION OF INDIVIDUALS AT HIGH RISK FOR SCHIZOPHRENIA
BASED ON LSTM-1DCNN

LSTM and 1DCNN are two deep learning algorithms with fundamentally different principles. This study suggests that
LSTM can extract temporal features, while 1DCNN can extract spatial features. The combination of 1DCNN-LSTM
allows for the simultaneous extraction of both temporal and spatial features. When dealing with continuous
measurements of EEG signals, extracting both temporal and spatial features using 1DCNN-LSTM yields more precise
identification results compared to solely extracting spatial or temporal features. Therefore, this study adopts the parallel
structure of the 1DCNN-LSTM algorithm.

As shown in Figure 5, the overall structure of 1DCNN-LSTM is in a Q-shaped configuration. It starts from the input
layer and branches into two separate paths. These paths are then connected to fully connected networks. In the diagram,
the naming convention for the functions follows Matlab conventions and differs in capitalization from LSTM, CNN, and
other terms.
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Figure 5. 1DCNN-LSTM Algorithm Structure Diagram

Researchers have used three-channel data (Fp1, Fp2, Fz) for EEG signal analysis, while others have used data from all
channels. To compare the differences between the two approaches, the input layer's input data size was set to 3 and 63,
respectively. In the LSTM-1DCNN architecture, the first branch after the input layer is the 1DCNN branch, which
consists of five convolutional layers, batch normalization layers, activation function layers, and pooling layers. The size
of the convolutional kernel is 9, and the number of kernels is sequentially set as 32, 64, 128, 256, and 512. Batch
normalization layers can accelerate the training process and improve the model's generalization ability. The specific
formula is as shown in formula 7:
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Whereas, '
ix represents the batch-normalized data, B represents the mean of the batch samples, and B represents the

sample variance.

The activation function layer in the LSTM-1DCNN architecture uses the ReLU (Rectified Linear Unit) activation
function. ReLU is a piecewise linear function that sets all negative input values to zero while leaving positive values
unchanged. This activation function accelerates the convergence speed and is commonly used in deep learning models.
For the pooling layer, there are several common types such as max pooling, average pooling, global pooling, and
adaptive pooling. In this study, the max pooling layer is used. It uses a window size of 2 and a stride of 2 to reduce
computational complexity and improve the robustness of features. The max pooling operation selects the maximum
value within each pooling window, thereby downsampling the feature map.

In this study, the commonly used flatten layer at the end of the 1DCNN branch has been replaced with a global average
pooling layer. This modification retains the flatten layer's dimensionality reduction characteristic while mitigating
overfitting to some extent. It also provides more flexibility in terms of input size, as the global average pooling layer can
handle inputs of varying dimensions.

The second branch after the input layer in LSTM-1DCNN is the LSTM branch, consisting of two LSTM layers. Each
layer has 100 neurons. The outputs from the first and second branches are then merged and fed into the fully connected
network. First, a concatenation layer is created to combine the inputs from the two branches, serving as the input layer of
the fully connected network. The fully connected network consists of three fully connected layers and three activation
function layers. The neuron numbers in the fully connected layers are 128, 64, and 2, respectively. The activation
function layers use ReLU, ReLU, and Sigmoid functions, respectively. The Sigmoid function is expressed as shown in
formula 8:

te
t 

1
1)(

(8)

During the training process of the algorithm, the Adam optimizer was used in the optimizer settings. The batch size was
set to 256, which means that 256 samples were used in each iteration. The number of epochs was set to 100, indicating
that the training process went through 100 iterations over the entire dataset.

5. EXPERIMENTAL RESULTS ANALYSIS AND DISCUSSION
After training the LSTM-1DCNN model, it is necessary to evaluate its performance to assess the effectiveness of the
training. There are several metrics used for evaluating classification performance. In this study, metrics such as accuracy,
precision, recall, and F1 score are employed. These metrics provide a comprehensive evaluation of the model's
performance, even in situations where the sample distribution is imbalanced, ensuring the accuracy of the evaluation
results.

Accuracy, precision, recall, and F1 score calculations are all dependent on the confusion matrix. The confusion matrix,
as shown in Table 1, represents the classification results. In this context, the positive class corresponds to the high-risk
samples for schizophrenia, while the negative class corresponds to the low-risk samples for schizophrenia:

Table 1. Confusion Matrix.

Predicted Positive Predicted Negative

Actual Positive True Positive(TP) False Negative(FN)

Actual Negative False Positive(FP) True Negative(TN)

Accuracy refers to the percentage of correctly predicted samples by the trained model on the test set, calculated as shown
in formula 9:

%100





FNFPTNTP
TNTPacc

(9)
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Although accuracy is a good metric for measuring overall correctness, it may not be a reliable indicator when dealing
with imbalanced datasets. In extreme cases, such as when the ratio of high-risk to low-risk samples for schizophrenia
reaches 99:1, a model that predicts all test samples as high-risk for schizophrenia would achieve an accuracy of 99%.
However, this accuracy value loses its interpretability and usefulness in such imbalanced scenarios.

Precision, concerning either positive or negative predictions, refers to the percentage of correctly predicted samples
among all samples of that particular class. Taking positive precision as an example, the formula is as shown in formula
10:

%100



FPTP

TPprecise
(10)

Recall, concerning either positive or negative predictions, refers to the percentage of correctly predicted samples among
all samples of that particular class. Taking positive recall as an example, the formula is as shown in formula 11:

%100



FNTP

TPrecall
(11)

Precision and recall are indeed valuable metrics, but it is often challenging to improve both simultaneously in practical
applications. To balance precision and recall, the F1 score is used as a combined evaluation metric. The formula for
calculating the F1 score is as shown in formula 12:

%10021 




recallprecise
recallpreciseF

(12)

The paper conducted experiments on open-eye data, closed-eye data, and "open & closed-eye" data for both full-channel
and commonly used three-channel data. The evaluation indicators are shown in Table 2:

Table 2. The overall table of common evaluation metrics for a model trained based on experimental data.

Acc
High risk of schizophrenia Low risk of schizophrenia

Precision Recall F1 score Precision Recall F1 score

Full-
channel

open-eye 94.86% 94.30% 95.60% 94.94% 95.44% 94.09% 94.76%

closed-eye 94.26% 93.90% 94.79% 94.35% 94.63% 93.71% 94.17%

open & closed-
eye 95.30% 94.81% 96.00% 95.40% 95.81% 94.57% 95.18%

Three-
channel

open-eye 77.93% 77.90% 78.63% 78.26% 77.95% 77.21% 77.58%

closed-eye 59.21% 58.58% 65.80% 61.98% 60.03% 52.47% 55.99%

open & closed-
eye 70.70% 69.88% 74.46% 72.10% 66.81% 71.66% 69.15%

Based on the provided data, it can be observed that there is a significant difference in performance between the model
trained on three-channel data compared to the model trained on full-channel data. However, the performance difference
is relatively small when comparing models trained on open-eye, closed-eye, and open & closed-eye data. The model
trained on full-channel open & closed-eye data exhibits the best overall performance, while the model trained on three-
channel closed-eye data shows the poorest performance. Models trained using the full-channel open-eye, closed-eye, and
open & closed-eye data can meet the standards for everyday applications, considering their overall performance.

6. CONCLUSION
Schizophrenia is a severe mental illness characterized by symptoms such as hallucinations, delusions, and disorganized
thinking. With millions of schizophrenia patients and an even larger number of individuals at high risk in China, accurate
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diagnosis and differentiation are necessary. With the development of EEG measurement technology, EEG techniques
have also been used for differentiation and diagnosis of schizophrenia. In this study, EEG data from 98 individuals were
used to classify and identify individuals at high and low risk of schizophrenia, achieving an accuracy rate of over 94%.

From the experimental results of this study, it can be observed that the performance of the three-channel model differs
significantly from the full-channel data-trained model, while the performance difference is smaller between the models
trained with eyes open, eyes closed, and combined eyes open & closed data. Therefore, the correlation between
schizophrenia identification and eyes open/closed is relatively small, and when identifying individuals at high and low
risk of schizophrenia, the factor of eyes open/closed may not need to be considered. On the other hand, the full-channel
data contains much more information than the three-channel data, which aligns with information theory, as a larger
dataset with more data points tends to improve the accuracy of model classification. Therefore, increasing the amount of
data can be one way to differentiate individuals at high and low risk of schizophrenia more accurately.

This study proposes the use of the 1DCNN-LSTM algorithm for the identification and classification of individuals at
high and low risk of schizophrenia. The recognition performance of this algorithm meets the requirements of practical
applications, accurately classifying individuals at high and low risk of schizophrenia based on full-channel EEG
measurement data. This approach enables accurate identification of schizophrenia and provides early diagnostic services
for individuals at high risk of schizophrenia.
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