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ABSTRACT 

Olive (Olea europaea L.) is a traditional crop of great socio-economic importance for Mediterranean countries, 
covering approximately 8,6 million hectares and providing over 90% of the world’s production of olive oil. 
However, emerging plant pathogens threaten olive and olive oil production in the Mediterranean. Recently, olive 
quick decline syndrome (OQDS), an insect-borne disease caused by the bacterial pathogen Xylella fastidiosa (Xf), 
has led to the death of millions of olive trees in Italy, endangering global olive oil production. Xf colonizes the 
xylem vessels of the host tree being transmitted by sap feeding insects, mainly Philaenus spumarius (Hemiptera: 
Aphrophoridae). Infected trees develop symptoms that resemble symptoms from water stress due to plant vessel 
blockage, resulting to leaf scorching, twig, and branch dieback, and leading to tree death within a few years. To 
safeguard productivity and profitability of crop production, early disease detection is imperative. Remote Sensing 
(RS) technology offers a promising solution to challenges posed by labor-intensive, error-prone conventional field 
monitoring methods of plant diseases, offering insights regarding their timely spatial and temporal spread, as well 
their impact at early-infection stages. RS platforms, such as airborne (e.g. UAVs) and spaceborne (satellite 
sensors) have been utilized to monitor Xf incidence and severity. Machine-learning techniques are applied to 
multispectral and hyperspectral data aiming to identify affected orchards by the implicated causal agents, while 
specific band combinations and indices e.g. NDVI, ARVI, OSAVI have been found promising for OQDS 
monitoring. Summarizing, the present review examines the use of RS in Xf monitoring over the past 20 years, 
evaluates the effectiveness of various RS methods, identifies their benefits and limitations, and discusses future 
trends to enhance detection efficiency, to support effective management decisions. 
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1. INTRODUCTION 

Olive (Olea europaea L.) is one of the world’s most economically significant crops, inextricably linked to the 
Mediterranean basin and adapted to a semi-arid temperate climate, characterized by elevated temperatures and 
long summer droughts. Over 48% of the global olive crop is concentrated within the Mediterranean region, 
spanning over 8,5 million hectares of groves, suggesting the importance of this crop for the southern part of the 
European Union (EU). Furthermore, besides its economic importance, traditional, low-input olive cultivation 
provides a substantial environmental service, via ecosystem preservation and biodiversity, since it utilizes barren, 
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stony, and steep terrains, prevailing against soil erosion [1], while it also supports the presence of social and 
economic networks in less-favored, remote areas of the countryside. However, the future of Mediterranean olive 
production faces major challenges because this region is considered a climate change ‘hotspot’ [2].  

Currently, manifested temperature increases, and precipitation shortages have already severely affected 
olive production, indicating rising threats in the coming years. In addition, several anthropogenic drivers, such as 
the liberalization of world-trade and shifts towards intensive production schemes, characterized by high crop 
density and genetic uniformity, have been linked to the emergence and/or reemergence of plant pests and diseases, 
mainly due to the creation of new contact pathways among hosts, vectors, and pathogens [3].  

Xylella fastidiosa (Xf) is an insect-borne, xylem-inhabiting, plant pathogenic bacterium native to the 
Americas, with a high genetic variability, holding an extremely broad pool of potential hosts (> 595) from 
herbaceous to trees, including agriculturally valuable crops [4],[5],[6]. Based on serological and phylogenetic 
studies, the species is divided into six subspecies, namely subsp. fastidiosa, subsp. multiplex, subsp. pauca, subsp. 
taschke, subsp. sandyi, and subsp. morus. These subspecies differ in their host rages, their geographical origins 
and spatial distributions [7]. It is noteworthy that currently only the subsp. fastidiosa, multiplex, and pauca have 
been detected in Europe, and several studies evaluated their potential spread [8],[9],[10], and the distribution of 
the main vectors of Xf in Europe [11] [12]. Although the symptoms caused by Xf can differ depending on the host 
plant, in general, the Xf bacterial cells block the transportation of water and soluble minerals via the xylem vessels 
and the infected plants show drought-related symptoms, including necrosis on the leaf margin, along with wilting 
and then drying of leaves, twigs and branches. Symptoms may also progress to stunted growth, resulting 
occasionally in plant death [5].  

The economic impact of Xf-related plant diseases is considered high, making the pathogen one of the 
biggest threats of agriculture worldwide, categorized as a quarantine pathogen by many countries, including the 
EU [13]. The pathogen is responsible for socio-economically important plant diseases, such as the Pierce's disease 
(PD) of grapevine, the bacterial leaf scorch of shade trees, the phony peach disease, the citrus variegated chlorosis, 
and the almond leaf scorch [9], thus it has become a worldwide health plant concern, since disease outbreaks 
associated with it have been reported also in Europe, Asia and the Middle East [11]. Genetic analyses of the 
collected specimens suggested a close relationship of the causal agent to Xf isolates from Costa Rica, indicating 
a potential introduction via the importation of ornamental plants [14]. Subsequently, different introductions were 
reported in France, Spain, Portugal, Switzerland, and Germany on a diverse range of agricultural and ornamental 
plants (> 170 plant species) [15]. It is evident that Xf has the capacity to rapidly spread long distances and across 
borders mainly via contaminated plant material, posing major risks to disease free countries and regions, 
especially in the Mediterranean where olives and grapes are mostly produced. According to predictions models 
aiming to determine the current and forecasted distribution of Xf in the Mediterranean region under climate change 
conditions, the potential distribution obtained for the current time comprises Portugal, Spain, Italy, Corsica, 
Albania, Montenegro, Greece and Turkey, as well as the northern Africa countries and the Middle East [8].  

However, as reported by [16], significant variation exists in symptoms caused by Xf and transmissibility 
between host species as well as cultivars. Host tolerance and/or resistance play an important role in symptom 
development, with plant age having an important influence on pathogen establishment and the severity of the 
disease.. As a result, anticipating the course of an epidemic in a novel environment is not very precise [3],[17]. In 
addition, the pathogen is not present uniformly in host tissue and therefore sampling detection accuracy can be 
low [18]. Detection based on visual inspection is further complicated, as the onset of symptoms caused by the 
pathogen is very slow and symptoms are not specific to the bacterium [19].  

Xf is obligately spread by xylem-feeding insects of the superfamily Cercopoidea, with over 100 species 
in Europe. Nevertheless, the most widespread vector in Europe is the meadow spittlebug Philaenus spumarius 
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(Hemiptera: Aphrophoridae), being also the main vector of the OQDS outbreak in Italy, while Homalodisca 
vitripennis (Hemiptera: Cicadellidae) has established long association with the epidemics of PD in North America. 
Other species have also demonstrated competence as Xf vectors, associated with OQDS in Italy, however 
exhibiting lower affinity with the olive trees and lower abundance in the specific ecosystems. Numerous 
uncertainties regarding the vector, pathogen and host interactions need to be studied in order to understand the 
epidemiology of the pathosystem and develop optimized detection and management strategies. For example, it is 
recorded in that the host preferences of different developmental stages of P. spumarius differ, with nymphs 
preferring herbaceous plants, while adults shift to woody hosts in particular olive trees or Quercus spp. in the 
begging of the summer in Italy (May to July), usually found at the level of herbaceous vegetation (15-70 cm). The 
majority of adult P. spumarius frequently move by walking or jumping rather than flying [20],[21]. In addition, 
the host-vector interactions affect seasonal vector dynamics, while climatic conditions are shown to affect vector 
behavior and subsequently the disease dynamics in the groves.   

Meadow spittlebug dispersal is characterized by short-distance flights, traveling with an average single 
flight length of 30 m and up to 100 m in a 24-hour period [22]. P. spumarius can spread Xf during the summer 
and fall, throughout the crop by secondary transmission (olive to olive), mostly because the bacterial cells linger 
in their mouthparts [23] [20].  

Considering the complex epidemiological interactions that characterize vector-borne diseases, under variable 
abiotic conditions and heterogeneous landscapes, the early disease detection and assessment by sensor techniques 
are expected to enable more precise and effective disease management.  Ground, air or space-borne RS platforms 
can gather digital information about pest-infected areas due to changes in the electromagnetic radiation [24] and 
they have been proven useful in the efficient identification, prediction and control of biotic stressors [25]. 
Furthermore, machine-learning technology is also applied to multispectral and hyperspectral data aiming to 
identify affected orchards by the implicated causal agents, while specific band combinations and indices have 
been found promising for OQDS monitoring. The aim of the present review was to list and summarize all the 
available scientific literature regarding the use of RS in the OQDS pathosystem over the past 20 years, in order to 
evaluate their effectiveness and discuss future trends to enhance detection efficiency and support effective 
management decisions. 

 
 

2. METHODOLOGY 

The present literature review was conducted, aiming to answer the research question of “How remote sensing 
technics can be utilized for detecting and monitoring the plant pathogenic bacterium, Xylella fastidiosa, which 
severely affects olive groves”. The search strategy was developed to provide a comprehensive collection of 
relevant research studies falling within the thematic area of the review based on the methodology presented in 
Figure 1. Two widely respected databases, Web of Science and Google Scholar, were selected for their wide 
coverage of publications across various fields to assure that all relevant papers were retrieved.  

To address the research question, a preliminary analysis was conducted to define the research terms, 
resulting to the final query across all fields. The selected terms that were used are: “olive” which was always 
combined with “Xylella fastidiosa” in all fields and the terms “satellite”, “image”, “UAV” or “remote sensing”. 
At first, the search query on the Web of Science database was: in all fields “olive” AND “Xylella fastidiosa” AND 
in all fields “satellite” OR “image” OR “UAV” OR “remote sensing”. The initial search was carried out in 
February 2023 and repeated in 15 August 2024 to ensure the inclusion of all relevant papers from the literature. 

For Google Scholar, the same terms and query were applied, although the exact search structure was slightly 
different due to the platform’s differed search capabilities and design. The above terms were used in this query: 
“olive” AND “Xylella fastidiosa” AND “satellite” OR “image” OR “UAV” OR “remote sensing”. The search on 
Google Scholar was carried out also in February 2023. Duplicated findings and review papers were excluded, 
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resulting in the final selection of the papers that are directly relevant to the research question set and are studied 
in this review.   

Figure 1: Review Methodology: Paper selection process

3. KEY FINDINGS

The initial search in the Web of Science database yielded 28 papers. Following the reviewing of the titles and the 
abstracts, 14 papers on the initial search and 1 paper from the repeated search, were found to be relevant to the 
research question, while 4 of them were also relevant but were excluded from our review as they were review 
articles. A complementary attempt was implemented using the Google Scholar database to detect any additional 
relevant papers. After reviewing the titles and the abstracts of the papers found using Google Scholar, 14 papers 
initially seemed to be relevant but at the next phase where the full papers were reviewed only seven were relevant 
and included in our work. Finally, using both databases we concluded with a total number of 22 papers, which 
were selected and analyzed, having a timeframe between 2018-2024. In the following sections (3.1 and 3.2) an 
analysis of the 22 papers is presented. All the papers that are analyzed in this review are listed in Table 1.

Table 1: Overview of the 22 papers that were analyzed in this review, including the authors, the titles and dates as 
well as their references

Author(s) Title Publication 
date

A/A and 
Reference

No
B. Rey, N. Aleixos, S. Cubero, and 
J. Blasco

Xf-Rovim. A Field Robot to Detect Olive 
Trees Infected by Xylella fastidiosa Using 

Proximal Sensing

Jan. 2019 1. [26]

Riefolo, C., Antelmi, I., 
Castrignanò, A., Ruggieri, S., 
Galeone, C., Belmonte, A., Muolo, 
M.R., Ranieri, N.A., Labarile, R., 
Gadaleta, G., Nigro, F.

Assessment of the Hyperspectral Data 
Analysis as a Tool to Diagnose Xylella 

fastidiosa in the Asymptomatic Leaves of 
Olive Plants

Apr. 2021 2. [27]

Poblete, T., Navas-Cortes, J.A., 
Camino, C., Calderon, R., Hornero, 

Discriminating Xylella fastidiosa from 
Verticillium dahliae infections in olive trees 

Sep. 2021 3. [28]
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A., Gonzalez-Dugo, V., Landa, 
B.B., Zarco-Tejada, P.J. 

using thermal- and hyperspectral-based plant 
traits 

Zarco-Tejada, P.J., Camino, C., 
Beck, P.S.A., Calderon, R., 
Hornero, A., Hernández-Clemente, 
R., Kattenborn, T., Montes-
Borrego, M., Susca, L., Morelli, 
M., Gonzalez-Dugo, V., North, 
P.R.J., Landa, B.B., Boscia, D., 
Saponari, M., Navas-Cortes, J.A. 

Previsual symptoms of Xylella fastidiosa 
infection revealed in spectral plant-trait 
alterations 

Jun. 2018 4. [29] 

Poblete, T., Camino, C., Beck, 
P.S.A., Hornero, A., Kattenborn, T., 
Saponari, M., Boscia, D., Navas-
Cortes, J.A., Zarco-Tejada, P.J. 

Detection of Xylella fastidiosa infection 
symptoms with airborne multispectral and 
thermal imagery: Assessing bandset reduction 
performance from hyperspectral analysis 

Apr. 2020 5. [30] 

Zarco-Tejada, P.J., Poblete, T., 
Camino, C., Gonzalez-Dugo, V., 
Calderon, R., Hornero, A., 
Hernandez-Clemente, R., Román-
Écija, M., Velasco-Amo, M.P., 
Landa, B.B., Beck, P.S.A., 
Saponari, M., Boscia, D., Navas-
Cortes, J.A. 

Divergent abiotic spectral pathways unravel 
pathogen stress signals across species 

Oct. 2021 6. [31] 

Castrignanò, A., Belmonte, A., 
Antelmi, I., Quarto, R., Quarto, F., 
Shaddad, S., Sion, V., Muolo, 
M.R., Ranieri, N.A., Gadaleta, G., 
Bartoccetti, E., Riefolo, C., 
Ruggieri, S., Nigro, F. 

A geostatistical fusion approach using UAV 
data for probabilistic estimation of Xylella 

fastidiosa subsp. pauca infection in olive trees 

Jan. 2021 7. [32] 

A. Belmonte, G. Gadaleta, and A. 
Castrignanò, 

Use of Geostatistics for Multi-Scale Spatial 
Modeling of Xylella fastidiosa subsp. pauca 

(Xfp) Infection with Unmanned Aerial Vehicle 
Image 

Jan. 2023 8. [33] 

F. Adamo, F. Attivissimo, A. Di 
Nisio, M. A. Ragolia, and M. 
Scarpetta 

A New Processing Method to Segment Olive 
Trees and Detect Xylella fastidiosa in UAVs 

Multispectral Images 

May 2021 9. [34] 

A. Di Nisio, F. Adamo, G. Acciani, 
and F. Attivissimo, 

Fast Detection of Olive Trees Affected by 
Xylella fastidiosa from UAVs Using 

Multispectral Imaging 

Aug. 2020 10. [35] 

Castrignanò, A., Belmonte, A., 
Antelmi, I., Quarto, R., Quarto, F., 
Shaddad, S., Sion, V., Muolo, 
M.R., Ranieri, N.A., Gadaleta, G., 
Bartoccetti, E., Riefolo, C., 
Ruggieri, S., Nigro, F. 

Semi-Automatic Method for Early Detection 
of Xylella fastidiosa in Olive Trees Using 

UAV Multispectral Imagery and 
Geostatistical-Discriminant Analysis 

Dec. 2020 11. [36] 

A. Corallo, F. Filieri, M. E. Latino, 
M. Menegoli, and M. Sarcinella 

An Internet Platform to Monitor Plant 
Pathogens Spread: The Italian Case of Xylella 

2021 12. [37] 

Hornero, A., Hernández-Clemente, 
R., North, P.R.J., Beck, P.S.A., 
Boscia, D., Navas-Cortes, J.A., 
Zarco-Tejada, P.J. 

Monitoring the incidence of Xylella fastidiosa 
infection in olive orchards using ground-based 

evaluations, airborne imaging spectroscopy 
and Sentinel-2 time series through 3-D 

radiative transfer modelling 

Jan. 2020 13. [38] 

P. Blonda, C. Tarantino, M. 
Scortichini, S. Maggi, M. 
Tarantino, and M. Adamo 

Satellite monitoring of bio-fertilizer 
restoration in olive groves affected by Xylella 

fastidiosa subsp. pauca 

Apr. 2023 14. [39] 
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A. Hornero, R. Hernandez-
Clemente, P. S. A. Beck, J. A. 
Navas-Cortes, and P. J. Zarco-
Tejada 

Using Sentinel-2 Imagery to Track Changes 
Produced by Xylella fastidiosa in Olive Trees 

Jul. 2018 15. [40] 

Semeraro, T., Buccolieri, R., 
Vergine, M., De Bellis, L., Luvisi, 
A., Emmanuel, R., Marwan, N. 

Analysis of Olive Grove Destruction by 
Xylella fastidiosa Bacterium on the Land 
Surface Temperature in Salento Detected 

Using Satellite Images 

Sep. 2021 16. [41] 

L. Telesca, N. Abate, M. Lovallo, 
and R. Lasaponara 

Investigating the Impact of Xylella fastidiosa 
on Olive Trees by the Analysis of MODIS 

Terra Satellite Evapotranspiration Time Series 
by Using the Fisher Information Measure and 

the Shannon Entropy: A Case Study in 
Southern Italy 

Mar. 2024 17. [42] 

L. Telesca, N. Abate, F. Faridani, 
M. Lovallo, and R. Lasaponara 

Revealing traits of phytopathogenic status 
induced by Xylella fastidiosa in olive trees by 

analysing multifractal and informational 
patterns of MODIS satellite 

evapotranspiration data 

Nov. 2023 18. [43] 

L. Telesca, N. Abate, F. Faridani, 
M. Lovallo, and R. Lasaponara 

Discerning Xylella fastidiosa-Infected Olive 
Orchards in the Time Series of MODIS Terra 

Satellite Evapotranspiration Data by Using the 
Fisher–Shannon Analysis and the Multifractal 

Detrended Fluctuation Analysis 

Jun. 2023 19. [44] 

Poblete, T., Navas-Cortes, J.A., 
Hornero, A., Camino, C., Calderon, 
R., Hernandez-Clemente, R., 
Landa, B.B., Zarco-Tejada, P.J. 

Detection of symptoms induced by vascular 
plant pathogens in tree crops using high-
resolution satellite data: Modelling and 
assessment with airborne hyperspectral 

imagery 

Sep. 2023 20. [45] 

G. Santoiemma, G. Tamburini, F. 
Sanna, N. Mori, and L. Marini 

Landscape composition predicts the 
distribution of Philaenus spumarius, vector of 

Xylella fastidiosa, in olive groves 

Jun. 2019 21. [46] 

Laneve, G., Luciani, R., 
Marzialetti, P., Pagnatti, S., Huang, 
W., Shi, Y., Dong, Y., Ye, H. 

Dragon 4-satellite based analysis of diseases 
on permanent and row crops in Italy and 

China 

2020 22. [47] 

 
 

3.1. Ground based / in situ data and Airborne RS platforms 

Ground based platforms and other in situ data are crucial for pest management by providing a non-invasive means 
of data collection [24]. A study developed XF-ROVIM, a robotic platform on the ground, for early detection, 
equipped with two digital single-lens reflex (DSLR) cameras, a multispectral camera, a thermal camera, and a 
hyperspectral system [26]. The XF-ROVIM efficiently collected (geolocation and synchronization) data, 
including 3D reconstructions and vegetation indices, inspecting the 4-ha field in max 6 hours. However, its ability 
to correlate structural data with the Normalized Difference Vegetation Index (NDVI), the Blue Normalized 
Vegetation Difference Index (BNDVI), the Leaf Area Index (LAI) and the Leaf Area Density (LAD) with disease 
symptoms was limited. Various models requiring spectral, spatial and structural information are needed. 
Moreover, another study [27] used a spectroradiometer (Field Spec IV) for the collection of hyperspectral data to 
detect Xf infected olives by employing statistical techniques, like Partial Least Square Regression (PLSR) and 
Canonical Discriminant Analysis (CDA). Selected trees were then analyzed using quantitative Polymerase Chain 
Reaction (qPCR) to confirm the presence of the pathogen. CDA analysis scored an accuracy of 0.67, being able 
to distinguish the infected trees.  
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Airborne RS platforms can be mounted on aircraft or other aerial vehicles to collect sample measurements 
in a non-destructive and non-invasive manner [48], [49]. RS techniques have been utilized in a study to 
differentiate infections caused by two very destructive plant pathogens, Xf and Verticillium dahliae (Vd) in olive 
orchards [28]. The researchers utilized airborne hyperspectral and thermal high-resolution imaging, along with a 
three-stage Support Vector Machine (SVM) [50] model and others, to analyze datasets obtained from Italy (Xf) 
and Spain (Vd) and refine the detection process. Techniques such as the pure tree-crown temperature to estimate 
the Crop Water Stress Index (CWSI), the pure tree-crown reflectance and radiance to measure the Sun-Induced 
Chlorophyll Fluorescence” (SIF@760) were used. In addition, the Photochemical Reflectance Index (PRI), the 
Anthocyanin Pigment Content (Anth), the Carotenoid Pigment Content (Cx+c), the LAI, the Blue-region Spectral 
Indices, and the NDVI were employed as well. The three-stage Machine Learning (ML) algorithm successfully 
distinguished infection presence from healthy trees. The Leaf Inclination Distribution Function (LIDF), the Cx+c, 
and the Βlue index B were the spectral characteristics that separated the affected trees from those infected by Vd. 
Moreover, the normalized Photochemical Reflectance Index (PRIn), the Blue/Red index (BF1), the Fluorescence 
Curvature Reflectance-based index (CUR), and the Carotenoid Reflectance Index (CRI700M) were the parameters 
found to differentiate Xf from Vd. To determine whether Xf-infected olive trees could be detected through airborne 
imaging spectroscopy and thermography before visible symptoms become apparent, the authors of another study 
[29] used hyperspectral and thermal cameras on an airborne platform. The research utilized and examined various 
models to retrieve detailed information on leaf biochemical content, canopy structures and fluorescence efficiency. 
Linear ML and deep learning algorithms were employed for enhancing Receiver Operating Characteristic (ROC) 
analysis which is usually used to assess the classifier’s efficacy [51]. Statistical analysis revealed that the most 
promising indices to identify infections were the Normalized Phaeophytinization Index (NPQI), CWSI, 
Carotenoid/Chlorophyll Ratio Index (PRIxCI), PRIn, SIF, BF1, the Photochemical Reflectance Index (512) 
(PRIM1), and Photochemical Reflectance Index (670 and 570) (PRIM4), CRI700M, Blue index BF2, Carotenoid and 
Xanthophyll Pigment indices (DCabCxc), the Vogelmann Index (VOG2), and the Transformed Chlorophyll 
Absorption in Reflectance Index/ Optimized Soil-Adjusted Vegetation Index (TCARI/OSAVI). When they 
evaluated their results using the SVM model, with pigment-structure-fluorescence and temperature traits to qPCR 
datasets, they achieved high accuracy in distinguishing asymptomatic versus symptomatic trees and detecting the 
initial versus advanced disease symptoms. In addition, airborne hyperspectral and thermal imagery were used to 
monitor Xf in olive orchards. ML techniques, such as SVM, were also used to analyze the data derived from the 
aerial images [30]. The authors showed that it is important to calculate tree temperature for the detection. Still the 
multispectral data were important when they used a particular number of spectral bands that could differentiate 
the trees based on presence / absence of symptoms. The most important indices seemed to be those including the 
blue (calculating NPQI) and the thermal (calculating CWSI-tree temperature) bands. Some of the indices that 
showed best accuracy were NPQI, PRIxCl, PRIn, VOG2, PRIM4, PRIM1, TCARI/OSAVI and CRI7000M, coupled 
with CWSI. Finally, in a subsequent study [31], airborne hyperspectral and thermal images were used to scan 
olive and almond trees in various regions in Italy and Spain that were affected by Xf and Vd. Abiotic stresses 
caused by water or nutrient deficiency results in stomatal closure and chlorosis, while the photosynthesis rate is 
also reduced. In practice, it is difficult to distinguish between abiotic and biotic stresses. Various physiological 
measurements were estimated, including leaf chlorophyll, anthocyanin, flavonoid, and nitrogen content through 
ground sensors and field assessments through PCR to identify the presence and type of the pathogen. Radiative 
Transfer (RT) model inversion was used to estimate plant traits and indices and ML algorithms like SVM to 
analyze the data. They determined that crops facing abiotic and biotic stresses show specific symptoms and as a 
result specific indices, for example, NPQI, Anth. and SIF@760 can be used to classify Xf infection. 

In a different study, UAV multispectral data, geophysical surveys using Ground Penetrating Radar (GPR) 
for tree trunks, visual inspection and molecular diagnostics (qPCR) were utilized, to assess the risk of Xf infection 
and create probability maps for better monitoring and disease prevention [32]. They suggested that it might be 
essential to have laboratory analysis at a small-scale to detect potential correlations within the radiometric 
variables indicating that the specific NIR correlations had a positive response. Furthermore, their results helped 
them to understand the outbreaks of bacterial / insect infections within the field (entry area), enchasing the rapid 
spread of the pathogen. A UAV equipped with multispectral radiometers was used in another study [33]. The 
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authors [33] captured spectral images in several bands and applied geostatistical methods such as experimental 
variograms and linear model of coregionalization. Still, the Red-edge of the NIR was chosen as an indicator for 
the physiological state of the plant. They used the iso-frequency scale to represent spatial variability reflectance 
values in the Red-edge. The authors also note that it is important to use isolated images to accurately identify trees 
and that the use of UAV is important. In an additional study [34], a UAV with a multispectral camera was employed 
to identify the infected trees. For this purpose, the Linear Discriminant Analysis (LDA) was used. CIR images 
derived from Blue, Green, Red, NIR and the Red-edge bands and NDVI images were further utilized. Several 
classifications were performed with one of them being the segmentation of the images based on the evaluation 
variables and those from the NIR and NDVI images. Overall, the algorithm sectioned all the trees achieving an 
average Dice Similarity Coefficient (DSC) of 0.66 and discrimination of infected trees was based on the LDA 
classification of the multispectral image pixels and not on the indices. A data fusion approach was also used in 
another research [35], integrating UAV multispectral data to implement detection of the infection. They generated 
detailed RGB, Color and Infrared (red, green, NIR) (CIR) and NDVI images using the high-resolution images 
taken and classified the identified trees by a segmentation algorithm, using LDA. When using NDVI, no 
significant differences were found between infected trees and healthy grassland but only differentiated trees from 
the soil. Therefore, they concluded that it is important to use a creation of a two-dimensional space. The shadows 
did not influence the classification algorithms. It appeared that by using five bands of multispectral images 
combined with LDA approach they were able to distinguish the infected trees. In a different study the authors used 
UAV high-resolution multispectral images obtained in a three-year period and performed geostatistical and 
discriminant analysis techniques [36] to provide insights to the early disease detection. In this case, Red-edge and 
red variables showed positive outcomes. The Red-edge gives insights on physiology, while red is correlated with 
the chlorophyll function of the plant. These also showed greater variability in the more stressed plants due to the 
presence of leaves with different degrees of dehydration, highlighting that UAV data combined with advanced 
data analysis can be effective. Finally, an internet platform within the Antidote Project was designed to monitor 
(threat, exposure and sensitivity) and forecast the risk of plant dehydration (symptom from Xf) [5]. The platform 
combines tools for user interaction, visualization and environmental data collection. It also provides a perspective 
of the olive groves by using orthophotos (precision aerial photography and satellite data). It was evident that by 
measuring parameters such as plant sap flow density (water and nutrient transfer), NDVI (plant health/ indicator 
for stress) and Vapour Pressure Deficit (VPD) (response to humidity), it was possible to monitor the disease. In 
addition, users could compare data from different fields and see how the crop evolves over time (e.g. seasonal 
trends or crop anomalies) [37]. Airborne platforms and more precisely UAVs, are preferably used more by 
different authors related to Xf disease affecting olive groves and its dynamics. 

 
3.2. Spaceborne RS platforms 

Large-scale monitoring in pest control is also facilitated by spaceborne platforms, usually satellites, which offer 
high-resolution imaging and data are processed through visualization and analysis [24]. An integrated method for 
large-scale detection and monitoring of Xf was developed using time-series images from the Sentinel-2A satellite 
over a two-year period in Apulia, Italy, [38] to observe the Disease Severity (DS) and Disease incidence (DI) of 
olive trees. Airborne hyperspectral images were also used for detailed analysis and model calibration purposes. 
The use of Vegetation Indices (VIs) from simulated spectra, six of the indices, (Atmospherically Resistant 
Vegetation Index (ARVI), Optimized Soil-Adjusted Veg. Index (OSAVI), Adjusted Transformed Soil-Adjusted 
Vegetation Index (ATSAVI), NDVI, Optimized Soil-Adjusted Veg. Index (RDVI), and Modified Simple Ratio 
(MSR)) were found to be efficient estimate both DS and DI, having relatively high coefficient of determination 
(R2) over 0.5. In addition, OSAVI and ARVI showed better results for DI. Also, Sentinel-2 high-resolution and 
Pléiades very high-resolution images were utilized to investigate the impact of biofertilizer treatments on olive 
groves affected by Xf in another study [39]. The research compared spectral indices from treated and untreated 
fields. More specifically, NDVI and OSAVI indices were used to determine whether Sentinel-2 images could give 
reasonable and accurate results compared to the very high-resolution images, giving R2 values ranging from 0.94 
to 0.97 and 0.84 to 0.92 respectively. Examining NDVI, Normalized Difference Red-Edge (NDRE), OSAVI, and 
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ARVI values, higher values were observed for the treated trees over a two-year period of treatment. Furthermore, 
treated trees had higher NDVI values than untreated ones. Further assessments were conducted [40], using 
multispectral Sentinel-2A and airborne hyperspectral images to monitor the spread of Xf in Apulia, Italy. The 
findings showed that out of all the indices tested, OSAVI, RDVI, NDVI, MSR, Normalized Difference Index 
(NDI), and Transformed Chlorophyll Absorption in Reflectance Index (TCARI) were positively correlated to the 
infection’s presence, while the Optimized Soil-Adjusted Vegetation Index 1510 (OSAVI1510) and the Modified 
Chlorophyll Absorption Ratio Index (MCARI) were correlated to infection severity. This demonstrates that 
OSAVI and OSAVI1510 are the most relevant indices related to infection incidences and severity, respectively. 
Another research focused on the disease analysis on olive groves in Italy and wheat in China using high-resolution 
satellite imagery [47]. For the assessment of Xf in olive groves, Sentinel-2 images were used to give a better 
classification on how the density of the trees and their number varies due to the presence of the infection. Very-
high resolution images were captured by the Gaofen-1 (GF-1) satellite for validation. The olive tree density was 
depicted by Fraction of Vegetation Cover (FVC), as predicted by the amount of vegetation land parameters in a 
research area [52]. Also, the tree number was calculated by finding the average tree size according to Corine Land 
Cover (CLC). As the area size grows, the comparison showed that the FVC tends to overstate the number of trees 
in the field. This is because small vegetation will affect the FVC final score and the overall number of trees. In 
addition to that, by analyzing the NDVI from Sentinel-2 images with a morphological approach allowed assessing 
olive grove density and tree count per crop field.  

Another method was used to study the effects of Xf in olive groves from 2014 to 2020 [41]. The authors 
utilized Landsat 8 and MODIS satellite data. They calculated Land Surface Temperature (LST) using thermal and 
spectral bands and used NDVI to determine the land cover emissivity. The study employed Recurrence 
Quantification Analysis (RQA) to examine LST’s temporal evolution across different land covers. Results showed 
that infected olive groves had reduced effectiveness in mitigating LST. This reduction was linked to the health 
and vegetation structure of the olive trees and the vegetation or soil beneath. The study did not find direct effects 
of Xf correlated with LST, suggesting other factors, such as changes in vegetation cover, climatic conditions at 
the site or management practices for the infection might be influencing the LST increase. Another parameter that 
was observed by the research community to detect and monitor Xf in olive orchards was Evapotranspiration (ET). 
The water evaporation from crop soil is influenced mainly by the solar radiation that is reaching the soil. The 
greater the tree canopy the greater the plant transpiration [53]. In addition, another study focused on the analysis 
of MODIS satellite timeseries with ET to evaluate and characterize the impact of Xf in two regions in Italy [42]. 
They observed that the canopies of the infected trees were small, indicating lower evaporation and transpiration 
compared to the healthy trees. In addition, the Fisher-Shannon method was also employed to demonstrate the 
temporal dynamics of the data from MODIS and ROC analysis. As a result, the uninfected areas showed a greater 
peak in ET pixel distribution than the infected areas since the index is more sensitive when applied to the 
uninfected sites. The ROC analysis also showed that the Fisher parameter can provide more reliable results 
detecting symptoms in olive groves caused by the Xf compared to the Shannon parameter. In another study, the 
MODIS satellite was used to analyze ET and to estimate the association of the tree water status with Xf infection 
over time [43]. The Fisher-Shannon as well as the multifractional detrended fluctuation analyses were used to 
assess the complexity of time-series data. These methods detected decreased complexity and increased instability 
in ET as a marker of disease presence, indicating that there is not enough resistance to environmental disruption, 
due to the inner dehydration caused by the disease and therefore infected trees show similarities regardless of 
environmental conditions. They also found distinguishable seasonal cycles, indicating that a six-month cycle of 
the trees can be taken as an indication of the infection, so ET patterns may function as preliminary markers for 
infected trees with Xf. ET was also the main subject in another study where MODIS Terra satellite data were used 
to assess and separate the infected from the healthy olive trees in southern Italy [44]. There were variations in the 
ET time series measurements, suggesting that the areas showing less diversity and compositionality appear to be 
infected because they fail to meet the nutrient requirements of the plant due to the infection. Still, ROC analysis 
gave positive results, showing that the multifractal structures could be more ideal for ET. Thus, ET could be an 
efficient tool for the identification and monitoring of Xf. 
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Furthermore, in a different study, the airborne hyperspectral, Worldview-2 and Worldview-3 
multispectral, and thermal images were used [45] to identify early-stage of the infections by Xf and Vd in both 
olive and almond trees and various indices were calculated to detect the symptoms. Sentinel-2 data were also used 
for calibration purposes. ML algorithms, such as SVM and RF, were used to classify symptom severity. When the 
thermal indicator CWSI was used, it upgraded the disease detection precision rates by 10-15%. In addition, NPQI 
showed great importance but decreased as the severity of the symptoms increased. Also, the factor that caused 
errors in the diagnosis was the number of trees in the early stage of the disease’s development. The overall 
accuracy in the disease detection was between 0.63-0.83 (R2). Lastly, the influence of landscape composition on 
P. spumarius (vector of Xf) distribution within olive groves was employed [46] utilizing high-resolution satellite 
images (Google earth Engine Pro) for vector monitoring The findings show that, the composition of the landscape 
around the olive orchards and the agricultural management may have an impact on the likelihood of the spread of 
the infection, highlighting the significance of managing landscape elements to control disease spread via the 
vector. From the analysis that was conducted, it was depicted that Sentinel-2 and MODIS satellites are the most 
commonly used RS spaceborne platforms for enhancing the research of Xf infections and can provide vital data. 
Table 2 provides a concise overview of the types of the sensors, data and primary indices / parameters utilized in 
the studies, along with their corresponding references. The selected papers used in the current review are fully 
listed in Table 1. 
 
 
Table 2: A summary of RS platforms that are used in the 22 selected papers for monitoring and detection of Xf 
infections in olive groves. 

Ground based platforms / In situ data 

Sensor type Data type Main indices/ parameters Reference 

Ground-based 
robot 

Thermal, 
Hyperspectral 
Multispectral 

DSLR cameras, GPS 

BNDVI, NDVI, LAI, LAD [26] 

Field Spec IV 
spectroradiometer Hyperspectral PRI, VOG2, Stress VIs [27] 

GPR for trunks Multispectral Green, Red-Edge and Red, NIR - Red-
Edge bands [32] 

Airborne platforms 

Sensor type Data type Main indices/ parameters Reference 

Airborne Hyperspectral, 
Thermal 

LIDF, Cx+c, blue index B, CWSI, PRIn, 
SIF, BF1 [28] 

Airborne Hyperspectral, 
Thermal 

NPQI, CWSI, PRIxCI, PRIn, SIF, BF1, 
PRIM1, CRI700M, Blue index BF2, PRIM4, 

DCabCxc, TCARI/OSAVI 
[29] 

Airborne Hyperspectral, Thermal NPQI, PRIxCl, PRIn, VOG2, PRIM4, 
PRIM1, TCARI/OSAVI, CRI7000M, CWSI [30] 

Airborne Hyperspectral, Multispectral, 
Thermal 

Chlorophyll content (Ca+b), carotenoid 
content (Cx+c), Anth., mesophyll structure 
(N), LAI, LIDF, CWSI, SIF@760, NPQI 

[31] 

UAV  Multispectral Green, Red-Edge and Red, NIR - Red-
Edge bands [32] 

UAV Multispectral NIR band [33] 

UAV Multispectral NDVI, NIR, blue, green, red, ref-edge [34] 
UAV Multispectral NDVI, CIR, RGB [35] 
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UAV Multispectral - [36] 
Precision aerial 

photography - NDVI, VPD, Plant sap flow density [37] 

Airborne  Hyperspectral ARVI, OSAVI, ATSAVI, NDVI, RDVI, 
MSR [38] 

Airborne Hyperspectral OSAVI, RDVI, NDVI, MSR, NDI, 
TCARI, OSAVI1510, MCARI [40] 

Airborne  Hyperspectral, Thermal NPQI, CWSI, PRIn, CUR, LAI, Anth, 
SIF@760, LIDFa, Ca+b , CRI700M [45] 

        Spaceborne platforms

Sensor type Data type Main indices/ parameters Reference 
Satellite data - NDVI, VPD, Plant sap flow density [37] 

Sentinel-2  Multispectral ARVI, OSAVI, ATSAVI, NDVI, RDVI, 
MSR [38] 

Sentinel-2 and 
Pleiades Multispectral NDVI, OSAVI, NDRE, ARVI [39]  

Sentinel-2 Multispectral OSAVI, RDVI, NDVI, MSR, NDI, 
TCARI, OSAVI1510, MCARI [40] 

Landsat 8 and 
MODIS Multispectral, Thermal LST, NDVI [41] 

MODIS Multispectral ET [42] 
MODIS Multispectral ET [43] 
MODIS Multispectral ET [44] 

Worldview-2 and 
Worldview-3 and 

Sentinel-2 
(validation) 

Multispectral NPQI, CWSI, PRIn, CUR, LAI, Anth, 
SIF@760, LIDFa, Ca+b , CRI700M [45] 

Multiple satellite 
platforms Google Earth Engine - [46] 

Sentinel-2 and  
GF-1 (validation) Multispectral NDVI, Carotenoid indices [47] 

 

4. CONCLUSION 

Spaceborne and airborne platforms are widely utilized in literature for detecting Xf infections in olive groves. 
Sentinel-2 and MODIS satellites are the most used spaceborne platforms, while airborne prevailed the category 
of airborne platforms. Vegetation indices like PRI, NDVI, OSAVI and more, are shown to be frequently employed 
in these studies. Notably, CWSI, SIF, and ET-related indicators provide crucial information about plant moisture 
levels, highlighting the internal dehydration caused by the disease. This information is valuable for assessing the 
infection state and exploring improvement/ management strategies. In addition to that, the combination of indices 
and other algorithms and models like SVM, LDA etc. enhances the accuracy of results and offers deeper insights 
into the progression of the disease and its severity. It is essential to recognize that each study area has unique 
characteristics and conditions, which can affect experimental outcomes despite being infected by the same disease. 
Future research should focus on the variability of LST under changing climatic conditions and to enhance its 
relationship with the disease. Furthermore, some studies suggest that hyperspectral images and other sensor types 
could be pivotal for disease detection in olive orchards, an aspect that can be further investigated. Finally, there 
is a noticeable lack of quantitative estimation of critical epidemiological variables, such as transmission rates, 
asymptomatic phase duration, and the timeline until the plant becomes completely dry and dies, that can relate 
with remote sensing data, and which are essential for risk assessment and pest management. 
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