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ABSTRACT   

The model of transformer structure occupies a dominant position in the field of multimodal large model. While previous 

studies have highlighted the potential of Visual Transformer (ViT) models, their reliance on large datasets poses 

challenges in domains like medicine, where obtaining extensive data can be difficult. In such scenarios, traditional 

convolutional neural networks (CNNs) often outperform transformer-based models due to their ability to capture pixel-

level fine-grained information. In this paper, we proposed soft mask operation and fine-grained information awared 

visual transformer Med-T, a CNN-Transformer hybrid visual backbone network tailored for visual feature extraction task 

on limited datasets. Through extensive evaluation across three small datasets, Med-T consistently outperforms 

alternative approaches, showcasing the efficacy of leveraging the pixel-level position information extraction ability of 

CNN branch. 
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1. INTRODUCTION  

In the modern era of medical informatics, the integration Artificial Intelligence(AI) technology into clinical diagnostics 

has become ubiquitous. Computer Vision (CV) is a crucial branch of artificial intelligence that enables computers to 

detect complex objects in clinical diagnosis. At the heart of CV lies the backbone network, a linchpin whose efficacy in 

extracting features profoundly influences downstream tasks’ performance. Two predominant types of backbone models 

have been employed for images feature extraction. The first type harnesses classical Convolutional Neural Network 

(CNNs), leveraging convolutional kernels to glean features from neighboring regions surrounding a center pixel. The 

most representative CNNs are ResNet [1], ResNeXt [2], and UNet [3]. The other method adopts a transformer structure, 

integrating Natural Language Processing (NLP) techniques into computer vision tasks. It splits images into a series of 

pixel regions, subsequently transformed into token representations akin to NLP task. For example, Vision Transformer 

(ViT) [4], a pioneering transformer-based model, evenly segments images into uniform patches, augmenting each with 

positional encoding to discern spatial relationships. 

Although the model of transformer structure is outstanding in the field of multimodal large model. Dosovitskiy noted 

ViT’s suboptimal performance on small datasets. Nevertheless, a significant persists, particularly in domains like 

medicine, where datasets are often severely limited. A poignant concern given the stark contrast between vast datasets 

like ImageNet [5] and meager medical datasets such as HAM10000 [6], Retinal OCT [7], Blood Cell Images [8], and 

COVID-CT [9]. As shown in Table 1, while ImageNet boasts millions of samples, medical datasets barely scrape a few 

thousand, exacerbating issues of class imbalance and hindering model generalization. For instance, despite HAM10000’s 

ostensibly ample sample size, disparities between category counts underscore the challenges posed by imbalanced 

datasets. 

Additionally, Figure 1 showcases the distribution of the A and B channels in the Lab color space for a randomly selected 

subset of 1000 samples for each dataset. Notably, with the exception of Fashion-MNIST dataset-comprising grayscale 

images with solely luminance information (thus both A and B channels are 0)-we observed a broad and comparable 

distribution across the channels in general-purpose datasets. Conversely, medical datasets tend to exhibit a more 

concentrated distribution. This discrepancy arises from the diverse nature of general-purpose datasets, which encompass 
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images depicting various objects and scenes. In contrast, medical datasets primarily feature images of specific 

anatomical regions, resulting in more uniform color tones within the dataset. 

Table 1. The number of samples in each dataset. 

Dataset Example Samples 

Genral purpose dataset 

ImageNet 
 

14,000,000 

ImageNet1K 
 

1,000,000 

Cifar10 [10] 
 

60,000 

Cifar100 [10] 
 

60,000 

FashionMNIST [11] 
 

60,000 

Medicine field dataset 

HAM10000 
 

10,015 

OCT-C8 
 

24,000 

Blood Cell Images 
 

12,500 

COVID-CT 
 

742 

 

     

ImageNet ImageNet1K Cifar10 Cifar100 FashionMNIST 

    

 

HAM10000 Retinal OCT C8 Blood Cell Images CONVID-CT  
Figure 1.  The A and B channels of each dataset sample in Lab space. 

While transfer learning offers a solution to the challenge of limited data samples in certain domains, significant 

disparities between the source and target domains, or substantial variations in samples sizes, can impede direct 

knowledge transfer. In such cases, models may require multiple transfers or adaptations to effectively transition from the 

source to the target domain. Consequently, exploring the applicability of vision transformers within contexts of 

constrained sample sizes becomes imperative. 
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Figure 2. The explanation for prediction of ResNet50 on four types of cell slices. 

In addition, due to the ViT model maps each patches to tokens and adds positional encoding to each token, it results in 

all pixels within a block having the same positional information, making it difficult to capture fine-grained pixel level 

position information within a patch. While reducing the size of each patch could capture finer details, it comes at the 

coast of significantly increased computational burden.  

Furthermore, during the training stage, images typically encompass both foreground and background elements, with the 

foreground object often constituting the target of interest for detection. However, complex backgrounds can introduce 

noise and interfere with model training. Illustrated in Figure 2, where four types of cells share identical backgrounds 

distinguished solely but variations in the blue region, we employed ResNet50 which trained on Blood Cell dataset for 

cell image prediction and LIME [12] for resulting interpretation. We found that the distribution of blue area is not 

concentrated. Although the ResNet50 correctly predicted the category label, but certain unrelated background features 

were erroneously associated with detected targets, even the target area that needs to be detected is not considered as 

features. Such outcomes represent undesirable model behaviors that underscore the need for robust background handling 

mechanisms in computer vision tasks. 

In response to these challenges, we proposed the Fine-grained information aware transformer Med-T—a hybrid 

architecture that combines the strengths of CNN and transformer visual backbone model. This model has exhibited 

superior feature extraction capability across multiple datasets compared to similar structured models in recent studies. 

 

Figure 3. Convolution kernel captures fine-grained position information as a supplementation for patches. 

In the Med-T, we employ CNN block with various structure as the encoder to capture pixel level information and 

generate convolutional images, as depicted in Figure 3. Subsequently, we employed the Scale-Invariant Feature 

Transform (SIFT) operator to creating a soft mask map and mask image that preserves both features points and their 

local neighborhoods. During the decoding stage, the mask image serves as the query in the decoder block, while the 

convolutional image encoded by CNN block acts as the key and value for decoding and mask the attention score map 

using soft mask map. Our contributions are summarized as follows: 
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 We proposed Med-T, a hybrid lightweight model architecture that utilizes a CNN block to encode convolutional 

image for decoder. This configuration enables the model to effectively encode fine-grained spatial relationships, 

enhancing visual transformer's ability to extract detailed positional information at the pixel level. Finally, the whole 

image feature can be represented by a low-dimensional vector for downstream task. 

 We partition the convolutional feature map and direct its focus towards the mask image, thereby enhancing the 

model's attention on the feature point region. 

 We introduce soft mask operation during the decode stage to extract and dilate feature points area, enabling the 

model to focus on relevant areas. It also allows the model to smoothly handle tokens at the edge of the mask. 

2. RELATED WORK 

Most of the previous visual backbone models can be divided into two main categories. The first category of backbone 

network is based on CNNs. CNNs are difficult to replace in fine-grained feature extraction tasks and have been used as 

the backbone network in multi-modal fields [13-17]. In CNNs, the receptive field of the model gradually increases as the 

number of convolution layers increases, which allows the model to extract high-level features. Therefore, in the multi-

modal field, most studies mainly use the classic pre-trained CNNs as the backbone network to extract visual features for 

downstream task, such as ResNet, VGG [18], ResNeXt. 

The models in the second category are based on transformer structure [19-26]. The ViT serves as a visual extractor in the 

CLIP [27] model, which splits images into a sequence of patches and aligns them with word tokens of text, this method 

converts visual task into natural language processing task. This operation facilitates the alignment of visual features with 

text features in multi-modal tasks. In the BLIP [28] model, an improved version of ViT is used as a visual feature 

extractor to encode images, which is also based on the ViT architecture. ViTL [29] is inspired by the ViT model, but it 

places the main computational burden on the transformer features fusion stage, which makes the model nearly ten times 

faster than previous VLP models. Ze et al. use a sliding window to capture information between different blocks, and 

reduces the amount of calculation [30]. In T2T-ViT [31], Yuan, Li et al. continuously merge two adjacent tokens, and the 

image is ultimately structured into one token. The Conformer [32] is a model that combine CNN with Transformer, 

interacting the local features of each stage with global features. Muhammad et al. proposed EdgeNeXt [33], this model is 

also based on CNN-ViT structure, which used a split depth-wise transpose attention (SDTA) encoder to effectively learn 

both local and global representations. In TransXNet [34], Meng et al. used a token mixer called D-Mixer to aggregate 

sparse global information and local details, which allows the network to see a wider range of contextual information.  

3. METHOD 

The primary objective of this study is to enhance the fine-grained position information-capturing capability of 

transformer-based models on small datasets. To achieve this, we introduced Med-T, a hybrid model amalgamating the 

CNN model’s local awareness capabilities, particularly effective on small datasets. To benchmark our model against 

established baselines, we conducted a comprehensive evaluation across various performance metrics. 

In this section, we first present the architectural framework of our proposed model (Section 3.1). Subsequently, we 

defined the task at hand and elucidated the criteria for evaluation (Section 3.2).  

3.1 Model architecture 

The structure of our model is shown in Figure 4. Initially, we employed the SIFT operator to detect salient feature points 

within the image. Subsequently, we expanded the pixels corresponding to these feature points through dilation and create 

a mask to isolate areas outside these points. Following this, we resized all images to a uniform size.  

When the mask image is segmented, each patch may contain a portion of the mask pixels. To generate the feature map, 

we employ a soft masking approach. Initially, we binarized the mask image with 0 pixels representing the masked area 

and 1 pixel for the unmasked area. Subsequently, we applied average pooling to divide the image into 14 × 14 feature 

maps. The value of each patch is inversely proportional to the number of mask pixels it contains; patches with more 

mask pixels have values closer to 0. Tokens with values lower than the average of all tokens are then truncated to 0. 

Finally, these tokens are tiled and transposed to produce the soft mask map, this stage is shown in the bottom of Figure 4. 

Proc. of SPIE Vol. 13270  1327003-4



 

 
 

 

 

 

 

Figure 4.  Architecture of Med-T. At the top is the CNN branch, which is used to extract fine-grained information at the 

pixel level. The middle part is the decoder. At the bottom is the Soft Mask step, which creates a soft mask map. 

The input of Med-T are images 𝐈 = {𝐼1, 𝐼2, . . . , 𝐼𝑛}. This stage can be described by the following formula: 

𝐈 = {𝐼1, 𝐼2, . . . , 𝐼𝑛}, 𝑛 = 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 (1) 

𝐈𝑚𝑎𝑠𝑘 = 𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛(𝑆𝐼𝐹𝑇(𝐈)) (2) 

𝐈𝑚𝑎𝑠𝑘_𝑖𝑚𝑎𝑔𝑒 = 𝑅𝑒𝑠𝑖𝑧𝑒(𝐈𝑚𝑎𝑠𝑘) (3) 

𝐈𝑐𝑜𝑛𝑣_𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑝𝑢𝑡 = 𝑅𝑒𝑠𝑖𝑧𝑒(𝐈) (4) 

𝐈𝑠𝑜𝑓𝑡_𝑚𝑎𝑠𝑘 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐵𝑖𝑛𝑎𝑟𝑖𝑧𝑒(𝐈𝑚𝑎𝑠𝑘_𝑖𝑚𝑎𝑔𝑒)) (5) 

I𝑠𝑜𝑓𝑡_𝑚𝑎𝑠𝑘(i) = {
0                  , I𝑠𝑜𝑓𝑡_𝑚𝑎𝑠𝑘(i)  <  Avg(𝐈𝑠𝑜𝑓𝑡_𝑚𝑎𝑠𝑘)

I𝑠𝑜𝑓𝑡_𝑚𝑎𝑠𝑘(i), I𝑠𝑜𝑓𝑡_𝑚𝑎𝑠𝑘(i)  ≥  Avg(𝐈𝑠𝑜𝑓𝑡_𝑚𝑎𝑠𝑘)
    (6) 

Matrixsoft_mask = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝐈𝑠𝑜𝑓𝑡_𝑚𝑎𝑠𝑘)T ∙ 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝐈𝑠𝑜𝑓𝑡_𝑚𝑎𝑠𝑘) (7) 

We initially input the original image into the convolutional module and then segmented the output of the convolutional 

module to generate a token with identical dimensions as that of the transformer. Then we used these tokes to focus on the 

feature of the decoder. In order to enhance the local information capture capability of the CNN branch, we make the 

CNN branch perform the auxiliary classification task. 
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In the decoding stage, we used the masked image as the Query, the token output by the CNN as the Key and Value, and 

adopted the soft mask mechanism to mask the attention score. Traditional attention mask only uses 0 and 1 for masking, 

but for each patch, it may only contain part of the mask pixels, so we used soft mask, when a token contains more mask 

pixels, its weight will be lower, which is a good deal with the attention alignment problem at the mask boundary. 

𝐈𝑐𝑜𝑛𝑣_𝑡𝑜𝑘𝑒𝑛 = 𝑃𝑎𝑡𝑐ℎ𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟(𝐈𝑐𝑜𝑛𝑣_𝑖𝑚𝑎𝑔𝑒), 𝐈𝑡𝑜𝑘𝑒𝑛 = 𝑃𝑎𝑡𝑐ℎ𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟(𝐈𝑚𝑎𝑠𝑘_𝑖𝑚𝑎𝑔𝑒) (8) 

𝐈𝑡𝑜𝑘𝑒𝑛_𝑠 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐈𝑡𝑜𝑘𝑒𝑛 + 𝐌𝐚𝐭𝐫𝐢𝐱soft_mask ∙ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄(𝐈𝑡𝑜𝑘𝑒𝑛) ∙ 𝐾𝑇(𝐈𝑡𝑜𝑘𝑒𝑛)

√dim𝐾
) ∙ 𝑉(𝐈𝑡𝑜𝑘𝑒𝑛)) (9) 

𝐈𝑡𝑜𝑘𝑒𝑛_𝑐 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐈𝑡𝑜𝑘𝑒𝑛_𝑠 + 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄(𝐈𝑡𝑜𝑘𝑒𝑛_𝑠) ∙ 𝐾𝑇(𝐈𝑐𝑜𝑛𝑣_𝑡𝑜𝑘𝑒𝑛)

√dim𝐾
) ∙ 𝑉(𝐈𝑐𝑜𝑛𝑣_𝑡𝑜𝑘𝑒𝑛)) (10) 

𝐈𝑡𝑜𝑘𝑒𝑛 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐈𝑡𝑜𝑘𝑒𝑛_𝑐 + 𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑(𝐈𝑡𝑜𝑘𝑒𝑛_𝑐)) (11) 

Finally, we can obtain a special token "CLS" that contains global representation of a sample. Then we used this "CLS" 

token to perform classification task. 

3.2 Task definition and measure standard 

Table 2. Dataset information. 

Dataset Categories Training Set Validation Set Test Set Image Size 

HAM10000 7 1667 417 500 3 × 640 × 450 
Blood Cell 4 4000 1000 1250 3 × 320 × 240 

Retinal OCT 8 4000 1000 1250 3 × 1000 × 512 

 

To assess the efficacy of our model on small datasets, we conducted classification task on a subset of the HAM10000, 

Retinal OCT-C8 and Blood Cell Image datasets. Except for HAM10000 dataset, wherein we addressed class imbalance 

by limiting each category to a maximum of 500 samples, we randomly selected 6250 samples from each dataset. From 

these, 4000 samples were designated for training, 1000 for validation, and 1250 for testing purposes. Details regarding 

the datasets are outlined in Table 2. 

Table 3. The parameter setting of all models. 

Model Depth Head Embedding Dim Learning rate 

ViTsmall 4 8 256 1e-5 
ViTbase 8 16 512 1e-5 

Swin-T [2,2,6,2] [3,6,12,24] 96 1e-5 

Swin-L [2,2,18,2] [3,6,12,24] 192 1e-5 
EdgeNeXt [3,3,9,3] 8 [24,48,88,168] 1e-5 

TransNeXt-T [3,3,9,3] [1,2,4,8] [48,96,224,448] 1e-5 
TransNeXt-S [4,4,12,4] [1,2,5,8] [64,128,320,512] 1e-5 

TransNeXt-B [4,4,21,4] [2,4,8,18] [76,152,336,672] 1e-5 
ResNet18 - - - 1e-4 

ResNet34 - - - 1e-4 

ResNet50 - - - 1e-4 
ResNet101 - - - 1e-4 

ResNeXt50 - - - 1e-4 
ResNeXt101 - - - 1e-4 

Med-TRes18 4 8 256 1e-4 
Med-TRes34 4 8 256 1e-4 
Med-TRes50 4 8 256 1e-4 

Med-TRes101 4 8 256 1e-4 
Med-TResX50 4 8 256 1e-4 

Med-TResX101 4 8 256 1e-4 
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Performance evaluation of the models was conducted using various metrics including accuracy, top-5 error, precision, 

recall and f1 score to measure the performance of models. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP +  FP
 (12) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP +  FP
 (13) 

𝐹1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (14) 

We implemented our model using the PyTorch framework, leveraging a NVIDIA GeForce RTX 4090 GPU for both 

training and testing. Our evaluations encompassed five distinct datasets. We resized all images to a uniform size of 

224 × 224 and set the patch size to 16 × 16. Across all datasets, we maintained a training batch size of 16 and a learning 

rate decay rate of 0.1. Detailed parameter configurations for each model are provided in Table 3. 

4. RESULT AND DISCUSSION 

Prior research has demonstrated that the ViT model often exhibits suboptimal performance when applied to small 

datasets, indicating inherent limitations within its architecture, particularly notable in fields such as medical imaging35. 

In our study, we sought to address this challenge by augmenting the ViT architecture with a convolutional block tailored 

to extract localized, fine-grained information, serving as the encoder component of our vision transformer. Furthermore, 

we introduced an approach by utilizing masked images as queries within the transformer decoder and soft mask 

operation to enhance the performance of the model. 

Table 4. The accuracy, top-5 error, precision, recall and f1 score of all models on RetinalOCT and Blood Cell Image 

datasets. 

Model 

Accuracy Top5 Error Precision Recall F1 Score 

Retinal 

OCT 

Blood 

Cell 

Retinal 

OCT 

Blood 

Cell 

Retinal 

OCT 

Blood 

Cell 

Retinal 

OCT 

Blood 

Cell 

Retinal 

OCT 

Blood 

Cell 
Baseline Model 

ViTsmall 46.80 22.80 0.72 - 46.73 16.94 46.82 22.88 46.34 15.74 
ViTbase 46.48 26.08 0.48 - 46.53 19.12 46.90 25.76 46.51 21.59 

Swin-T 45.36 30.64 0.88 - 39.69 31.31 45.20 30.66 44.76 30.78 
Swin-L 44.32 30.96 0.88 - 45.90 32.34 44.25 30.70 43.91 30.90 

EdgeNeXt 44.56 30.56 0.72 - 44.90 30.95 45.05 30.81 44.86 30.65 
TransNeXt-T 46.08 41.20 0.40 - 45.85 39.14 45.86 40.94 45.42 39.76 

TransNeXt-S 44.08 41.84 0.48 - 45.32 40.16 45.35 41.93 45.04 40.73 

TransNeXt-B 38.22 25.36 4.24 - 38.20 25.68 39.49 25.40 37.25 25.13 
ResNet18 68.56 75.76 0.08 - 68.25 78.62 68.31 75.82 68.13 75.96 

ResNet34 66.40 68.00 8.00 - 67.50 71.80 66.82 68.14 66.68 68.29 
ResNet50 49.12 64.16 2.72 - 53.52 64.90 48.95 64.11 48.43 64.37 

ResNet101 47.20 49.76 1.92 - 50.64 54.49 47.52 49.73 47.86 51.01 

ResNeXt50 51.60 51.36 1.04 - 52.38 53.61 52.47 51.36 52.23 51.78 
ResNeXt101 50.16 46.40 1.84 - 52.45 49.66 50.12 46.42 49.71 47.40 

Our Model 
Med-TRes18 69.04 77.12 0.64 - 68.81 80.51 68.76 77.14 68.58 77.67 
Med-TRes34 57.44 62.24 0.16 - 58.17 68.32 58.49 62.31 55.81 62.77 
Med-TRes50 54.48 53.04 3.04 - 55.96 56.65 54.14 53.09 54.37 53.89 

Med-TRes101 45.60 34.16 0.72 - 47.14 32.97 45.29 34.35 43.91 31.12 
Med-TResX50 48.96 57.12 1.76 - 55.34 57.11 49.52 57.14 48.17 56.97 

Med-TResX101 49.44 51.28 1.84 - 49.98 55.60 49.84 51.19 49.45 51.93 
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Firstly, we conducted evaluations on subset of Retinal OCT, HAM10000 and Blood Cell Image data sets. Performance 

metrics including accuracy, top-5 error, precision, recall and f1 score of all model are summarized in Table 4 and Table 

5.  

Notably, due to the limited number of categories in the Blood Cell Image dataset (only four categories), top-5 error is not 

considered in the test on this dataset. Our model Med-TRes18 exhibited commendable accuracy, achieving a peak 

performance of 69.04% on the Retinal OCT dataset. Furthermore, compact model variant demonstrated noteworthy 

accuracies of 70.00% and 77.12% on the HAM10000 and Blood Cell Image datasets respectively. As highlighted by 

Dosovitskiy, models structured upon the ViT framework often exhibit inferior performance compared to classical CNN 

models, particularly when trained on datasets with a restricted number of samples. Our utilization of the CNN model as a 

convolutional encoder, showcasing superior performance over other ViT-based models. This is attributed to the Med-T’s 

adeptness at capturing intricate local features, a capability which proves crucial when discerning subtle distinctions 

within medical image datasets. 

Table 5. The accuracy, top-5 error, precision, recall and f1 score of all models on HAM10000 datasets. 

Model Accuracy Top5 Error Precision Recall F1 Score 

Baseline Model 
ViTsmall 48.60 5.80 38.81 36.05 33.30 
ViTbase 47.40 5.40 32.20 35.87 32.81 
Swin-T 54.40 4.69 39.69 41.27 38.70 

Swin-L 46.40 4.00 30.83 35.49 31.07 

EdgeNeXt 52.00 4.40 38.69 39.06 34.93 
TransNeXt-T 49.40 7.00 37.76 38.56 35.03 

TransNeXt-S 56.80 4.40 47.4 42.96 41.18 
TransNeXt-B 45.00 6.60 28.34 33.43 27.58 

ResNet18 69.20 1.60 65.52 63.69 63.60 

ResNet34 63.00 1.40 59.82 58.95 58.91 
ResNet50 59.80 2.20 57.37 54.84 55.65 

ResNet101 59.20 1.60 53.24 53.77 53.20 
ResNeXt50 59.20 1.00 55.83 54.94 55.19 

ResNeXt101 62.60 2.60 59.98 55.43 56.53 

Our Model 
Med-TRes18 69.40 0.80 59.68 61.52 60.35 
Med-TRes34 70.00 0.80 61.03 63.17 61.85 
Med-TRes50 62.60 1.80 52.74 57.52 54.95 

Med-TRes101 58.40 3.80 47.70 46.66 44.41 
Med-TResX50 63.20 2.20 55.11 56.80 55.73 

Med-TResX101 61.00 1.40 53.13 52.69 52.65 

Furthermore, our analysis revealed a marginal decline in model performance as models expanded. This phenomenon can 

be attributed to the inherent challenges posed by limited data availability, exacerbated by the large parameter space of 

the model architecture, which may impede effective feature learning from small dataset. 

   
Confusion matrix on Retinal 

OCT dataset. 

Confusion matrix on HAM10000 dataset. Confusion matrix on  Blood Cell Image dataset. 

Figure 5. Confusion Matrix of Med-T model on test set of three datasets. 
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The challenge posed by the Blood Cell Image dataset, featuring a mere four categories, lies in the inherent similarity of 

foreground object features (Each type of cell only differs in local structure). Consequently, distinguishing between these 

samples poses a considerable challenge of fine-grained information capturing for baseline models. Notably, models 

structure upon the simplest ViT architecture demonstrated the poorest performance on the Blood Cell Image dataset. 

Conversely, our model, which amalgamates the strengths of both convolutional and ViT structures, emerges as a 

standout performer on this dataset. Leveraging the pixel-level feature extraction prowess of convolutional kernels 

alongside the holistic understanding facilitated by ViT structures, our model attains an accuracy of 77.12% and a 

precision of 80.51% on the Blood Cell Image dataset. 

Figure 5 presents the confusion matrix generated by the Med-T model on the test set of three datasests. Notably, the 

HAM10000 dataset exhibits imbalanced class distributions, with samples from the “NV” category comprising 66.9% 

of the total dataset. The model did not predict the class "DF" correctly due to the small number of samples "DF" 

category. Nevertheless, the prediction of our model is not biased towards the "NV" category. Conversely, when the class 

distributions are balanced, the confusion matrix displays a more concentrated distribution along the diagonal. 
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Figure 6. Explanation of model predictions on Retinal OCT C8 dataset using tool LIME. The blue area is the feature that 

contributes the most to the category predicted by the model. 

Finally, we employed the model interpreter LIME to elucidate the results predicted by the Med-TRes18 model, as depicted 

in Figure 6 and Figure 7. LIME leverages a trained local surrogate model to explain individual samples, highlighting 

features contributing to the predicted outcomes. The results indicate that despite the model also taking some irrelevant 

backgrounds into consideration, it can almost completely cover the targets to be detected. And the blue area is mainly 

concentrated near the detected target, showing a continuous distribution. The mask operation conveniently covers areas 

unassociated with the detection task, facilitating precise predictions by enabling the model to focus on the relevant 

regions during inference. 
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5. CONCLUSION 

Previous research has elucidated the challenges facing ViT models when applied to small datasets, a point reaffirmed by 

the findings of this paper. However, within the medical domain, high-quality samples are scarce commodities, each 

bearing immense value. Through rigorous experimentation, we have demonstrated that augmenting transformer 

architectures with convolutional block to extract pixel-level position information can notably enhance model 

performance. This integration effectively addresses the limitations of vision transformer models when confronted with 

limited sample sizes, offering a promising avenue for advancement in medical large model. In this study, we combined 

convolutional block with transformers and leveraged soft mask operation to bolster the performance of vision 

transformer models on small datasets. Our findings signify the potential of vision transformer models in medical field. 

However, it is pertinent to acknowledge the extra computational demands inherent to our approach. Moving forward, we 

envision a convergence of diverse encoder and feature extraction methodologies with vision transformer models, aiming 

to further enhance their applicability across medical field. 

Original 

Image 

     

Masked 

Image 

     

Explanation 

     

Original 

Image 

     

Masked 

Image 

     

Explanation 

     

Figure 7. Explanation of model predictions on HAM10000 dataset using tool LIME. The blue area is the feature that 

contributes the most to the category predicted by the model. 
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