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ABSTRACT  

Brain-computer interface technology (BCI) enables users to directly control external devices by establishing an 

information transmission path between the brain and external devices. Brain-computer interfaces based on the motor 

imagination paradigm have also begun to enter various fields. Therefore, the research on the brain-computer interface 

encoding and decoding algorithm of the motor imagination paradigm is particularly important. This paper proposes a 

model based on attention mechanism CBAM and EEGNet to classify motor imagination electroencephalogram signals 

(MI-EEG), and verified it on a public data set. Compared with a single EEGNet model, it improved by 3.7%, which is 

8.1% higher than the traditional FBCSP model. The experimental results show the effectiveness of the new CBAM-

EEGNet model on the four classification tasks of motor imagery. 
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1. INTRODUCTION  

Brain-computer interface (BCI) serves as a bridge, allowing the brain to directly exchange information and transmit 

instructions with external devices[1]. Among them, motor imagery (MI) refers to the phenomenon in which people 

spontaneously imagine body movements and produce changes in brain waves[2]. By decoding and analyzing the motor 

imagination electroencephalogram (MI-EEG), it is possible to determine what body movements the subject is imagining. 

Motor imagination has thus been applied to brain-controlled wheelchairs, robotic arms and other external equipment for 

disabled people[3], thus improving MI-EEG classification accuracy of EEG is extremely important.  

The traditional MI classification task is mainly divided into three stages: preprocessing, feature extraction and feature 

classification. Among them, feature extraction is the most critical step, including signal analysis in the time domain, 

frequency domain and spatial domain[4][5]. Commonly used time domain analysis methods include autoregressive (AR) 

models and Hjorth parameter feature extraction methods; time domain analysis usually uses Fast Fourier Transform (FFT) 

and Power Spectral Density (PSD)[6]; spatial domain analysis mainly uses the Filter Bank Common Spatial 

Pattern(FBCSP)[7] analysis method. However, these feature extraction algorithms rely on artificial knowledge and 

experience, which greatly limits the decoding performance. Lawn et al.[8]proposed a lightweight convolutional neural 

network model EEGNet suitable for electroencephalography. It performs well in four brain-computer interface (BCI) 

paradigms, but this model considers the information between channels to be independent and ignores the characteristics of 

the non-Euclidean space of the brain[9], resulting in insufficient spatial feature extraction of EEG signals.  

Therefore, this experiment introduces the convolutional attention mechanism CBAM[10] based on EEGNET to optimize 

it. As an emerging hot spot in deep learning, attention mechanism has attracted a large number of researchers' attention 

and investment in recent years. Its goal is to allow the evaluation model to focus on more critical features, thereby 

improving the performance of the model. 

2. DATA  

2.1 Dataset description 

This study was carried out on the public data set BCI Competition IV-2a, which was provided by 9 different subjects. Each 

subject used 25 brain electrodes to record EEG signals. In the data preprocessing stage, the 50Hz power frequency 

interference is removed, and a band-pass filter from 0.5Hz to 100Hz is applied, with a sampling rate of 250Hz. During the 

experiment, subjects were asked to perform four different motor imagery tasks, including motor imagery of the left hand 

International Conference on Future of Medicine and Biological Information Engineering (MBIE 2024), edited by 
Yudong Yao, Xiaoou Li, Xia Yu, Proc. of SPIE Vol. 13270, 132700J · © The Authors. Published under a 

Creative Commons Attribution CC-BY 3.0 License · doi: 10.1117/12.3039780

Proc. of SPIE Vol. 13270  132700J-1



 

 
 

 

 

 

(Category 1), right hand (Category 2), feet (Category 3), and tongue (Category 4)[11]. Although the 25-lead EEG signal 

contains a three-lead electrooculogram channel (EOG), which is used to monitor eye movement information, in the 

classification task of this study, the data of the three EOG channels were not included in the analysis. The dataset comprises 

two sessions recorded for each subject on different days, utilizing data from one session for model training and the other 

session's data for evaluating the model's performance. Each session contains 288 experiments, each experiment lasts 7.5 

seconds, and the experimental flow is recorded following the timing scheme shown in Figure 1.  

 

Figure 1. EEG experiment timing arrangement 

2.2 Data preprocessing 

In order to extract neuroelectric signals associated with motor imagination, this study implemented a 7-35 Hz bandpass 

filter to isolate theta, alpha, and beta waves related to motor imagery[12]. Subsequently, the three-channel EEG data was 

filtered and cleaned, leaving only the 22-channel EEG data relevant to motor imagery classification. The data was then 

segmented, with a duration of 2 to 6 seconds chosen considering the subjects' reaction time and data validity. EEG signals 

during this time frame were analyzed. 

3. METHODOLOGY  

3.1 Overall framework 

This article uses the innovative CBAM-EEGNet model to classify and train IV-2a data. The overall structure of the 

model is shown in Figure 2. 

 

Figure 2. Overall structure of the model 
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The shape of the original data is (288 × 22000), where 288 is the sample size and 22000 is the number of sampling points 

in an experiment. The input layer first performs dimensionality enhancement processing on the original EEG signal and 

converts it into a form of (288×1×22×1000), and then inputs it into the CBAM module to extract channel and spatial 

features[13]. The extracted CBAM features are further input into the EEGNet network structure for deeper feature 

extraction. The EEGNet network structure mainly consists of three layers of networks: the first layer is a convolutional 

layer, whose purpose is to divide and filter the input signal; the second layer is a deep convolutional layer, whose purpose 

is to filter each multi-channel signal after spatial filtering and noise reduction, it is converted into a single-channel signal; 

the third layer is a separate convolution layer, whose purpose is to extract features of each filtered signal separately; after 

the original signal is processed by the network, the extracted Features are passed to the fully connected layer for 

classification. 

3.2 CBAM module 

In the CBAM module, as shown in Figure 3. The input feature F with dimensions Z×H×W is first multiplied with the same 

elements of the channel attention weight MC to obtain the output F´; F´ is then multiplied with the same elements of the 

spatial attention weight MS to obtain the final output F´´ of the CBAM [14]. Where Z, H and W represent the number of 

channels, height and width of the feature map respectively. In this experiment, Z is 1, H is 22 and W is 1000. 

 
 
Figure 3. Overall structure of CBAM module 

CAM module is shown in Figure 4. The input is recorded as F. F undergoes global maximum pooling and global average 

pooling at the same time. Extract two different pooled features, and then go through a shared MLP to fuse the two pooled 

features in the MLP. The output features of the MLP concatenate each other element by element, and then generate channel 

attention weight MC with dimension (Z × 1 × 1) through Sigmoid activation. The output of the CAM can be calculated by 

the following formula: 

 𝑀𝐶(𝐹) = 𝜎(𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹)) +𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹))) (1) 

In the formula, F is the input feature, 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 and 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 represents the global average pooling and maximum pooling 

operations respectively, 𝑀𝐿𝑃 refers the multi-layer perceptron, and 𝜎 refers the Sigmoid activation function. 

 
 

Figure 4. CAM module 
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SAM module is shown in Figure 5. This module performs global average pooling and global maximum pooling 

operations[15] on the input feature map F´ from the channel dimension to obtain two (1 × H × W) feature maps. Then the 

two feature maps are spliced through the concatenate operation, and finally a layer of (7 × 7) two-dimensional convolution 

is used to obtain the spatial attention weight MS with the dimension of (1 × H × W), the output of the SAM can be calculated 

by the following formula: 

 𝑀𝑠(𝐹) = 𝜎(𝑓7×7(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹))(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)))                                           (2) 

In the formula, 𝑓7×7 refers a（7 × 7）convolution operation.  

 

 
 

Figure 5. SAM module 

4. RESULTS AND DISCUSSION 

In order to evaluate the effectiveness of the CBAM-EEGNet, we selected the Adam optimization algorithm to train the 

network model, and compare and analyze the EEGNet combined with the CBAM module and the unoptimized traditional 

EEGNet model on the public data set. The loss rate and accuracy curves of the training process are shown in Figures 6 and 

7 Show. 

 

Figure 6. The train loss diagram and accuracy fitting curve diagram of the ninth subject during the training process under the 

EEGNet model 
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Figure 7. The train loss diagram and accuracy fitting curve diagram of the ninth subject during the training process under the 

CBAM-EEGNet model 

As can be seen from Figures 6 and 7, under the single EEGNet model, subject 9 began to stabilize after training for 300 

epochs. After the introduction of the CBAM module, the train loss curve dropped rapidly between 50 epochs and basically 

stabilized after 100 epochs the accuracy fitting curve graph can reach a relatively high level and remain stable within 100 

epochs, which further proves that after the introduction of the CBAM module, the model fitting speed is faster and the 

model's prediction performance is good. 

Table 1. Statistics the classification accuracy of 9 subjects under the same environment and different classification methods 

Subjects FBCSP[16] EEGNet CBAM-EEGNet 

1 0.676 0.715 0.768 

2 0.417 0.470 0.546 

3 0.745 0.882 0.842 

4 0.481 0.471 0.463 

5 0.398 0.396 0.478 

6 0.273 0.451 0.421 

7 0.773 0.620 0.782 

8 0.755 0.701 0.743 

9 0.606 0.771 0.809 

AVG 0.569 0.613 0.650 

 

By comparing the classification results based on EEGNet, CBAM-EEGNet and traditional FBCSP, as shown in Table 1, 

it is found that the overall performance of the improved combination model proposed in this article is better than other 

classification models that also use this data set. The average accuracy of the traditional FBCSP model is 56.9%, the 

EEGNet model is 61.3%, and the CBAM-EEGNet model can reach 65%. Compared with a single EEGNet model, the 

accuracy of the model proposed in this article is improved by 3.7%, and is 8.1% higher than the traditional FBCSP 

model. This proves that CBAM-EEGNet improves the classification performance of MI-EEG signals to a certain extent 

and provides an effective solution for efficient interaction of brain-computer interface (BCI) technology. 
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