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ABSTRACT   

Reconstructing gene regulatory networks (GRNs) is a fundamental challenge in bioinformatics that aims to unravel the 
complex relationships between genes and their regulators. Graph convolutional neural networks have shown more 
significant improvements in this field than traditional methods. However, GCNs rely heavily on smooth node features 
rather than graph structures. To address this limitation, Two-layer Neighbor Overlapping Perceptual Graph Convolution 
Network (Tnop-GCN) is proposed, that jointly learns local and global structural features by PageRank and DeepWalk. 
Experiments on DREAM4 dataset demonstrate that Tnop-GCN outperforms many other gene regulatory network 
reconstruction methods.  
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1. INTRODUCTION  
The processes of gene expression are shown to be mutually regulated rather than to be in isolation. And such complex 
regulatory relationships construct gene regulatory networks (GRNs), which represent the molecular dynamic processes of 
many organisms including human beings [1]. As the accurate reconstruction of GRNs is of significance for precision 
medicine and many related clinical applications, the study of gene regulatory networks holds significant importance for 
propelling research in the life sciences, uncovering the mechanisms of diseases, and fostering the development of 
biotechnological advancements [2]. Traditional methods for reconstructing GRNs include model-free and model-based 
approaches. Model-free reconstruction methods do not rely on any preset models and directly identify regulatory 
relationships from gene expression data. Model-based methods involve constructing mathematical models to describe the 
dynamic relationships between genes and learning the parameters of these models. Common models include Boolean 
network models[3][4], and Bayesian network models[5][6].  

Graph representation learning, also known as network embedding, aims to map the vertices of a graph to a low-dimensional 
vector space while preserving as much of the vertices' topological structure as possible [7]. These vector representations 
support various network analysis tasks, such as node classification, link prediction, and community detection. Recently, 
the efficiency of graph representation learning has been significantly improved by using deep learning algorithms like 
Skip-gram[8] and convolutional networks [9]. For example, DeepWalk [10] and Node2vec[8] algorithms generate node 
sequences through random walks and then employ methods similar to those used in natural language processing to learn 
vector representations of nodes. Besides, PageRank algorithm is a web ranking algorithm based on link analysis which 
calculates the importance and ranking of web pages by analyzing the link relationship between web pages, and then 
deduces the quality and influence of web pages. The PageRank algorithm can treat the entire Internet as a huge directed 
graph, and determine the relevance and ranking position of the webpage by iterating the PageRank value of each webpage, 
so it is usually used for both webpage ranking and graph representation.  

With advancements in deep learning technology, novel methods tend to reconstruct GRNs by performing link prediction 
task, with the aim for predicting potential connections using node features and an incomplete prior network. However, the 
out-degree of GRNs follows a power-law distribution and the in-degree follows an exponential distribution, making it 
difficult for many link prediction algorithms to capture this unique structural feature. To overcome the limitation, in this 
study, a novel GRN reconstruction inference based on GCN and multi-feature from PageRank and DeepWalk is proposed 
to explore the potential regulatory relationships from gene expression data. To fully leverage the information multi-
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dimensional data, GCN is employed to extract node features first, yielding meaningful node feature matrix. Then, 
PageRank and DeepWalk are applied to capture the global network structural information and the local network feature 
information, respectively. Lastly, three types of features are added by weight, thereby achieving link prediction for GRN 
reconstruction. Experiments are carried out on DREAM4 multifactor datasets with different scale, which shows the 
proposed method outperforms many other baseline methods.  

2. METHOD  
2.1 Preliminaries 

Notations. For a given undirected network ( , )G V E= ，where V contains all N nodes in the network, iv V∈ , E

stands for the edge between nodes ( , )i jv v E∈ ，The elements of the adjacency matrix {0,1}N NA ×∈  is binary, 1ijA =  

iff ( , )i jv v E∈ . Degree matrix ii j ijD A= ∑  ；The feature matrix of the node is N CX R ×∈ ，where N is the 

number of nodes and C  is the dimension of the feature.  

A graph convolution neural network for link prediction. Given the graph G  and the feature X , the graph convolution 
neural network learns meaningful node representations by iteratively aggregating the transformation representations of 
neighbor nodes in each i th GCN layer, as shown below,  

( 1) ( ) ( )( )l l l
GCNH A H Wσ+ =   (1) 

where N N
GCNA R ×∈

 is an adjacency matrix normalized in different ways according to each GCN architecture，

( ) ( 1)( ) l ll d dW R
+×∈ is a trainable weight matrix, and (0)H is a node feature matrix N FX R ×∈ . After stacking L GCN 

layers, use the node representation ( )LH to predict the existence of each link ( , )i j :  

( ) ( )ˆ ( ( , ))L L
ij i jy s h hσ=  (2) 

where ( , )s ⋅ ⋅ is a function, . .e g , inner product or MLP, and ( )L
ih is the representation of the node i from ( )LH .  

Deepwalk. For each point u V∈ ,define ( )SN u V⊂ as a network neighbor that generates a node u  through a neighbor 

sampling strategy S . The goal of Node2vec is: with a given vertex U maximize its neighbors ( )SN u V⊂ and get its 

logarithmic likelihood function in low-dimensional space. That is: 

( ) log Pr( ( ) | ( ))max S
f u V

D u N u f u
∈

= ∑
 

(3) 

Then, the node representation matrix L  is gotten, which contains the low-dimensional representation of each node. 

Pagerank. The PageRank formula is shown as follow,  

( ) ( )
( )

1
0

n ii
i

PR Ti
PR a

L Ti
+

=
=∑  (4) 

( )iPR Ti :PR value of other nodes (pointing to node a ); ( )L Ti :the number of outgoing links of other nodes 

(pointing to node a ); i :cycle number.  
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2.2 Two-layer neighbor overlapping perceptual graph convolution network 
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Figure 1: The Tnop-GCN framework for link prediction. Tnop-GCN learns structural features from an adjacency matrix and 
estimates similarity scores based on overlapped neighborhoods. Tnop-GCN first uses Node2Vec and Pagerank to generate 
local structural matrix and global structural matrix. Then Tnop-GCN calculates both similarity scores from each 
representation matrix L, Z and H and computes the convex combination of three scores by a trainable parameter α. 

Link prediction based on local structural feature: As the low-dimensional node representation matrix L is gotten, each 
i th row vector of 

iL  involves all the feature of the adjacent nodes of node i respectively. The existence score of a link 

between node i and node j is: 

( ) ( )T
ijy D i D j=  (5) 

Link prediction based on global structural feature: We use structural feature vectors ( ) 1NPR a R ×∈  to construct 

diagonal matrix struct
N NX R ×∈  to maintain the respective feature of each node after aggregation,  

( )( )structX diag PR a=  (6) 

Then, to consider the number of overlapping neighbors, the Tnop-GCN aggregate the feature of the neighbors by 
multiplying the non-normalized adjacency matrix A  and get the similar node information matrix Z : 

structZ AX=  (7) 
Further, in order to consider the neighbors with multi-hop overlap, the multi-hop settings will be extended as:  

1 struct
Φ

1

L
l l

l
Z g A Xβ −

=

 = ∑ 
 

 

 

(8) 

where β  is a super parameter, controlling the weight of near and far neighbors, gφ is MLP, that controls the scale of 
L .  
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With the similar node information matrix Z , each i-th row vector of Z  involves all the feature of the neighboring nodes 
of node I. Then we can get the existence score of the link between node i and node j:  

( )( ) ( )

2T struct
i j kk N i N j

z z x
∈ ∩

=∑  (9) 

Domain overlapping perceptual aggregation scheme: As is shown in Figure 1, with a link ( , )i j , Tnop-GCN calculates 

both similarity scores from each representation matrix L, Z and H and computes the convex combination of three scores 
by a trainable parameter α as follows:  

( ) ( ) ( )( ))ˆ (1 ) ,T T
ij i j i j i jsz z l ly hhα σ β σ α β σ= ⋅ + ⋅ + − − ⋅  (10) 

3. EXPERIMENTAL RESULTS AND DISCUSSION 
3.1 Dataset and baseline methods  

Dataset. The experiments are carried out on DREAM4 multifactorial dataset which comprises two scales of networks: 
small-scale networks containing 10 genes and large-scale networks containing 100 genes. Each scale is represented by five 
independent datasets. These networks possess diverse topological structures, selected to simulate the biological systems 
of Escherichia coli or Saccharomyces cerevisiae. For the networks of size 10, each network is constituted by five time 
series, whereas for those of size 100, each network is constituted by ten time series. Each time series encompasses 21 data 
points.  

Baselines. To demonstrate the effectiveness of Tnop-GCN, the performance of Tnop-GCN is compared with four GRN 
reconstruction model, DeepSEM [11], GENIE3 [12], GNNLink [13] and ARACNe-ap [14]. DeepSEM is a neural network 
version of the structural equation model (SEM), which explicitly models the regulatory relationships among genes. 
GENIE3 is a model based on feature selection with tree-based ensemble methods and is the best performer in the DREAM4 
in silico multifactorial challenge. GNNLink leverages known GRNs to deduce the potential regulatory interdependencies 
between genes and shows great robustness and accuracy. ARACNe-ap can build complex regulatory networks from 
hundreds of gene expression profiles, with an Adaptive Partitioning strategy (AP) for estimating the mutual information.  

3.2 Performance on 10-Gene Networks 

As is shown in Table 1, the comparison involved Tnop-GCN, GENIE3, and deepSEM. Tnop-GCN exhibited notably 
superior average AUC values compared to GENIE3 and deepSEM. It is shown that GENIE3 is a little better than Tnop-
GCN in the range of Net2. This may be attributed to the merit in scenarios where networks exhibit specific characteristics 
that align with its inference methodology. However, the performance of Tnop-GCN is superior on all of the networks 
except Net2. Despite the exceptional performance of GENIE3 in Net2, Tnop-GCN's overall superiority in average AUC 
values across other sub-networks underscores its pivotal role and significance in gene network inference algorithms. This 
consistency reaffirms the importance and necessity of Tnop-GCN in achieving reliable and accurate gene regulatory 
network predictions.  

Table 1: The performance comparison on DREAM4 10-gene Networks (Using AUC).  

 DeepSEM GENIE3 Tnop-GCN 

Net1 0.539 0.669 0.833 

Net2 0.598 0.711 0.667 

Net3 0.627 0.644 0.667 

Net4 0.700 0.378 0.750 

Net5 0.574 0.691 0.750 

Avg 0.608 0.619 0.733 
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3.3 Performance on 100-Gene Networks 

As is shown in Table 2, Tnop-GCN demonstrated the highest average AUC (0.670) among the algorithms tested on 100-
Gene Networks, confirming its superior performance and essential role in gene network analysis. It has been illustrated 
that ARACNe-ap outperforms Tnop-GCN marginally when dealing with Net3 and Net4. This superiority of ARACNe-ap 
could be attributed to its specialized adaptability to the unique structural features of these specific networks, where its 
algorithmic approach might exploit network intricacies more effectively. Conversely, in other networks, Tnop-GCN 
consistently surpassed its counterparts with significantly higher average AUC values. This overall trend highlights the 
robustness and general applicability of Tnop-GCN across diverse network architectures.  

Table 2: The performance comparison on DREAM4 100-gene Networks (Using AUC). 

 GNNLink ARACNe-ap deepSEM Tnop-GCN 

Net1 0.537 0.602 0.550 0.757 

Net2 0.646 0.568 0.535 0.674 

Net3 0.509 0.655 0.530 0.641 

Net4 0.576 0.645 0.510 0.631 

Net5 0.576 0.627 0.525 0.645 

Avg 0.569 0.619 0.530 0.670 

 
3.4 Discussion 

In summary, our study underscores Tnop-GCN as an exceptional algorithm for gene network inference, consistently 
achieving superior performance across most sub-networks in both 10-gene and 100-gene networks. While some algorithm 
occasionally outperformed Tnop-GCN in specific network contexts, the overall effectiveness of Tnop-GCN in producing 
higher average AUC values reaffirms its critical role in advancing gene network analysis methodologies. Future research 
endeavors should continue to explore the nuanced interactions between algorithmic design and network topology to 
enhance the precision and applicability of gene regulatory network inference techniques in biological research. 

4. CONCLUSION  
The research introduces a graph convolution neural network (Tnop-GCN) based on two-layer neighbor overlap, which can 
extract local and global structure information, which is the key element of link prediction. Tnop-GCN learns useful 
structural features from the adjacency matrix and estimates overlapping neighbors for link prediction. The research also 
adaptively combines Tnop-GCN and feature-based Tnop-GCN to consider structural features and input node features. In 
addition, the research also evaluates Tnop-GCN to prove its efficiency. In the future work, the plan is to further develop 
Tnop-GCN to promote more heuristic methods based on link prediction and improve scalability through efficient sparse 
matrix computation. 
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