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ABSTRACT 

Predicting and evaluating the operation status of the equipment online can not only reflect the personalization of the 

equipment but also meet the actual working needs of intelligent substations. Through acoustic fingerprint learning, 

potential defects and hidden dangers can be identified, and fault handling and emergency repair time can be shortened. 

This article proposed a convolutional neural network to learn the acoustic fingerprint of substation equipment and 

discussed the feature selection and feature preprocessing of the proposed machine learning model. We then conducted a 

simulation experiment and analyzed the right parameters selection for the proposed model. The experiment results show 

that the proposed model can achieve a recognition accuracy of above 90% on all the different abnormal voiceprint test 

sets. The recognition results showed the effectiveness of the voiceprint recognition model and can thus provide a solid 

guarantee for the safe and stable operation of the power system. 
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1. INTRODUCTION 

The internal production equipment in smart substations is subjected to electrical, magnetic, mechanical, and other 

stresses, which will be accompanied by vibration. The mechanical waves formed will be transmitted to the casing 

through the medium and can be captured by sensor devices. This signal contains a large amount of time-frequency 

domain characteristic information, like fingerprints. When there is an abnormality in production equipment, the acoustic 

fingerprint will change and can be used as the main characteristic parameter for diagnosing equipment defects and faults. 

Voiceprint has characteristics such as stability, measurability, and uniqueness, making it very suitable for monitoring 

intelligent substations. 

In recent years, with the development of deep learning, the use of voice recognition has been widely applied in criminal 

investigation, finance, smart home, and other fields. At present, the inspection robots used in substations have the ability 

to recognize the appearance of the equipment, such as oil leakage, surface damage, pollution, etc. However, abnormal 

states and developmental faults inside the equipment, cannot be observed through imaging methods. The use of deep 

learning methods such as Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LTSM) Networks 

provides effective technical means for substation sound recognition. Therefore, conducting research on key technologies 

for voiceprint recognition and fault detection of key equipment in substations based on deep learning, realizing automatic 

analysis and judgment of the operating status of important primary equipment such as transformers and reactors, can 

detect equipment faults in substations in advance, which helps to accelerate the process of unmanned substations. 

Predicting and evaluating the operation status of the equipment online at any time not only reflects the personalization of the 

equipment but also meets the actual working needs of intelligent substations. Therefore, the development of equipment 

status management tools based on machine hearing can provide data support for power system decision-making assistance. 

Through machine learning, potential defects and hidden dangers can be identified, and fault handling and emergency repair 

time can be shortened, providing a solid guarantee for the safe and stable operation of the power system. 
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2. RELATED WORKS 

2.1 Acoustic fingerprint recognition 

Acoustic Fingerprint Recognition technology was originally a biometric technology, mainly by converting sound signals into 

electrical signals, and then using computer technology for recognition. The development of voiceprint recognition technology 

can be mainly divided into the following three stages: In the 1930s, Kersta1 from Bell Labs introduced the possibility of 

applying voiceprint recognition technology in speaker recognition, opening up research on the application of voiceprint 

recognition technology. The University of Washington Atal2,3 proposed a linear prediction model and a linear cepstral 

coefficient LPCC by simulating human pronunciation, which greatly improves the accuracy of voiceprint recognition. 

Although LPCC can better describe the resonance peak characteristics of noise signals, its ability to describe consonants is 

insufficient. Davis and Mermelstein4 proposed Mel Frequency Cepstra Coefficients (MFCCs), which has better accuracy and 

robustness in pattern recognition and has therefore developed into the most extensive and mature feature extraction method. 

Template matching technology is gradually being replaced by the Hidden Markov Model (HMM), Gaussian Mixture Model 

(GMM), and Artificial Neural Network (ANN) models. The increase in model parameters increases the difficulty of training, 

and the model puts forward higher requirements for the dimensionality and volume of data.  

In the 21st century, statistical models represented by GMM have become the mainstream technology of voiceprint 

recognition methods. MIT Lincoln Laboratory5 proposed a Gaussian Mixture Model Universal Background Model 

(GMM-UBM) to effectively solve the problem of excessive GMM parameters, making it possible for voiceprint 

recognition technology to move from experimentation to application. On this basis, Campbell et al.6 from the same 

laboratory applied a Support Vector Machine (SVM) to GMM, effectively improving the expression ability of voiceprint 

recognition models. Kenny, Dehak, and others from the Montreal Computer Research Institute have proposed techniques 

such as Joint Factor Analysis7 and i-vector8, which further enhance the model’s ability to compensate for channel 

variability and resist noise.  

In recent years, with the improvement of computational performance, the application of artificial intelligence methods 

such as deep learning has driven the development of phonetics. In 2014, Google’s Variani et al.9 used Deep Neural 

Network (DNN) to automatically extract feature vectors from spectrograms and named the extracted vectors d-vector. In 

2015, Chm et al.10 from MIT applied convolutional neural networks to text-dependent speaker recognition and achieved 

good results. In 2017, Snyder et al.11 from Johns Hopkins University proposed the famous x-vector by using a 

feedforward neural network (FNN) to extract embeddings instead of i-vectors, which aggregates the time pooling layers 

of the network on the input speech to capture the speaker’s long-term features. This allows the network to be trained to 

distinguish speakers from speech segments of different lengths.  

2.2 Equipment acoustic fault detection 

With the development of voiceprint recognition technology, the use of acoustic signals for fault diagnosis of various 

mechanical equipment has attracted widespread attention from domestic and foreign scholars due to the characteristics of 

simple installation of acoustic sensors and no impact on equipment performance. In 1996, Gao et al.12 proposed a method 

for diagnosing bearing faults by applying neural networks and spectral analysis techniques. Then some researchers 

proposed a blind source separation algorithm based on a genetic algorithm, which solved the problem of mutual 

information between audio diagnostic signals of bearing faults. In 2021, Pan et al.13 from Northwestern Polytechnical 

University conducted a detailed study on the acoustic model of bearing faults. In the same year, Mao14 simultaneously 

used acceleration sensors and voiceprint sensors to collect bearing operating status signals, and proposed a fusion 

diagnostic model based on Convolutional Neural Networks (CNNs), which achieved higher accuracy. In 2022, Tauheed 

et al.15 established a professional acoustic laboratory to obtain low-noise bearing voiceprint signals, and analyzed the 

signals using feature extraction methods combined with SVM. The experimental results proved that using non-invasive 

voiceprint sensors for accurate fault diagnosis of bearings is reliable and effective. In 2023, Liu et al.16 proposed a 

bearing fault diagnosis method that combines variational mode decomposition and Mel-CNN, achieving excellent fault 

diagnosis accuracy. Research has shown that for the fault diagnosis needs of rotating machinery in special environments, 

bearing fault diagnosis methods based on voiceprint recognition technology can effectively diagnose bearing faults 

through non-contact sensors, with unique advantages.  

At present, research on fault diagnosis methods based on voiceprint recognition mainly focuses on feature extraction and 

template-matching techniques. This article will delve into related research and validate the effectiveness of the proposed 

method through experiments. 
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3. FEATURE SELECTION OF NOISE SIGNALS 

The operation status of power transformers varies in various external manifestations, and noise signals are one of the 

important characteristics. However, it is difficult to quantitatively determine the changes in the noise signal of power 

transformers solely based on sensory perception. Therefore, selecting an appropriate feature parameter to characterize the 

operating condition of power transformers is an important task. Voiceprint contains the time-domain and frequency-

domain characteristics of the speaker’s speech signal. By analyzing the voiceprint of the speaker’s speech signal, the 

speaker’s identity can be effectively recognized. Similarly, the noise signal of a power transformer is also a type of 

sound signal, and its voiceprint characteristics can also reflect the working condition of the power transformer body.  

The noise distribution data of power transformers under Undervoltage, rated voltage, overvoltage, and different DC bias 

coefficients have their characteristics. Based on these data, the extraction of voiceprint characteristic parameters can be 

carried out. Firstly, the energy and frequency characteristics of the noise signal will be analyzed; Secondly, we should 

preprocess the noise signal; Then, Mel frequency spectrogram from the preprocessed noise signal will be extracted; 

Finally, a comparative analysis and study will be conducted on the extracted Mel time-frequency spectra under different 

working conditions. 

3.1 Energy characteristics 

In the analysis of sound signals in power transformers, the vertical axis amplitude in the time-domain waveform of sound 

pressure corresponds to the instantaneous energy magnitude of sound pressure. Therefore, the larger the amplitude of 

sound pressure, the greater its energy. According to the national standard, the noise level of a 110kV transformer is 

below 80 decibels at a distance of 3 meters from the transformer. In order to make the extracted noise voiceprint features 

more prominent, this article refers to the requirements of GB/T 1094.10-2003 “Power Transformers—Part 10: Sound 

Level Measurement”. The noise signal of this point is measured at the corresponding position on the envelope surface of 

the transformer oil tank, with a distance of 20 cm between the measurement points, and a distance of 100cm between the 

specified contour line of the measurement points and the transformer oil tank. One of the measurement points was 

selected as the observation point, which is 100cm away from the transformer and has a height of 1/2 of the transformer’s 

height. The distance between the two edges of the transformer is equal. Measure the time-domain waveform of noise 

data at observation points of power transformers during no-load operation under rated voltage, undervoltage, 

overvoltage, and different DC bias coefficients, that is, the change in total sound pressure amplitude at different times. 

The amplitude fluctuation of the total sound pressure field at the starting time in the time-domain waveform of the power 

transformer under different working conditions is significant. This is because the time-domain waveform of the total 

sound pressure field is obtained through simulation experiments, and multi physics field simulation software requires a 

certain transition time to achieve stable results in the model calculation. By comparing and analyzing the time-domain 

waveform of the total sound pressure of power transformers under different working states, it can be found that there is a 

significant difference in the total sound pressure amplitude between the DC bias working state and the normal working 

state, that is, there is a significant difference in energy characteristics. However, the total sound pressure amplitude 

between the undervoltage and overvoltage working states and the normal working state is basically the same, and the 

difference in energy characteristics is small. Therefore, the energy characteristics cannot distinguish which working state 

the power transformer is in. Therefore, further analysis using other methods is needed. 

3.2 Frequency characteristics 

In order to further analyze the vibration characteristics of the sound waveform of power transformers, the sound signals 

of power transformers under different working conditions can be decomposed into a series of trigonometric functions 

with different amplitudes and periods. Using the amplitude and frequency of a series of trigonometric functions to 

express the characteristics of this sound segment, their correspondence is only related to frequency. Therefore, the 

correspondence with the time-domain spectrum is called the frequency-domain spectrum. The Fourier transform can be 

used to transform from time domain to frequency domain. 

The sound spectrum of power transformers is mainly composed of 100 Hz and its harmonics, which are mostly 

distributed in the frequency range of 0-800 Hz. However, in the DC bias working state, the sound spectrum will still 

exhibit 50 Hz and its odd harmonic components. With the continuous increase of excitation voltage, the main frequency 

shifts from 100 Hz to 200 Hz, and higher harmonics gradually increase. As the DC bias coefficient continues to increase, 

the proportion of the main frequency gradually decreases, and higher and odd harmonics continue to increase. 
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Based on the above analysis, due to the extremely complex information contained in the noise signals generated by 

power transformers under different working conditions, conventional energy and frequency characteristics can only 

reflect some differences in characteristics between time and frequency domains, but it is difficult to accurately and 

clearly determine the operating state of the power transformer. Therefore, further research is needed on noise signals to 

select more effective voiceprint feature vectors in order to achieve accurate recognition of different working states of 

power transformers. 

4. FEATURE PREPROCESSING 

Sound signals are non-stationary signals that are difficult to process directly. Therefore, in order to accurately extract their 

feature vectors, it is necessary to preprocess the sound signals. Due to the short-term stability of sound signals, processing 

short-term sound signals can also achieve high accuracy. Therefore, longer sound signals can be divided into several short-

term sound signals and then processed. Similarly, as a type of sound signal, the noise signal of power transformers is also a 

non-stationary signal with the characteristic of short-term stability. Therefore, it is possible to preprocess the noise signal of 

power transformers. However, due to the different characteristics of power transformer noise signals and speech signals, the 

preprocessing methods used for power transformer noise signals will also be different. 

4.1 Pre-emphasis 

In the spectrum of power transformer noise signals, the energy of the noise signal is usually distributed in the low-

frequency part, and the energy in the low-frequency part is much higher than that in the high-frequency part. In addition, 

as the frequency of the power transformer noise signal continues to increase, the power spectrum will gradually decrease, 

which will lead to a significant decrease in the signal-to-noise ratio of the high-frequency part of the noise signal. In 

order to avoid numerical problems in subsequent Fourier transform operations, it is necessary to enhance high-frequency 

information, which is very useful for balancing the spectrum and can also improve the overall signal of noise signals and 

the accuracy of noise signal recognition. 

4.2 Framing 

Performing Fourier transform on the noise signal of the power transformer transforms the noise signal from time domain 

to the frequency domain. However, if the Fourier transform is applied to the entire segment of noise signal, temporal 

information will be lost. Due to the short-term stability of power transformer noise signals. Therefore, assuming that the 

frequency information remains unchanged for a short period of time t and performing a Fourier transform on a frame of 

length t, the frequency and time domain information of the noise signal can be appropriately represented. So it is 

necessary to perform frame division processing on the original noise signal, dividing it into N segments of fixed-size 

noise signals, where each segment of noise signal is called a frame. Compared with voice signals, power transformer 

noise signals are more stable and can be appropriately increased in frame length to achieve higher accuracy. However, 

excessively long frame lengths can have a serious impact on recognition speed. After comprehensive consideration, this 

article chooses a frame length of 40ms and a frameshift of 10ms, which means that adjacent frames have a 25% overlap 

rate. This ensures the temporal invariance of the noise signal while ensuring the spectral resolution of the power 

transformer noise signal. 

4.3 Adding windows 

After framing the noise signal of the power transformer, the noise signal is cut off at the boundary, causing discontinuity, 

which can cause significant distortion in Fourier analysis. Therefore, it is necessary to add a window function to every 

frame of the original noise signal and set the value outside the window to 0 to eliminate possible signal discontinuity. 

The commonly used window functions include rectangular windows and Hamming windows. The main lobe width of the 

Hamming window is larger than that of the rectangular window, and the side lobe width is smaller than that of the 

rectangular window. This not only effectively reduces the loss of effective information, but also makes the low-pass 

characteristics smoother, which can better reflect the frequency characteristics of short-term signals. Therefore, this 

article uses Hamming windows for windowing processing. 

5. DESIGN OF DEEP LEARNING MODEL 

5.1 Model selection 

Deep learning is an important branch of machine learning, originally designed to enable computers to automatically learn 
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existing data like the human brain. Deep learning can extract and compute low-level features, thereby obtaining more 

abstract high-level features and effectively mining distributed features of data. Compared with other learning methods, 

deep learning has a stronger learning ability. Therefore, applying deep learning to the voiceprint feature recognition of 

power transformers under different working conditions has strong feasibility and practical value. 

Convolutional neural networks, as one of the widely used network frameworks in deep learning, have excellent 

performance in image processing, video analysis, natural language processing, and other fields. At present, some 

scholars have studied how to apply convolutional neural networks to the state detection of power transformers. The 

difference between it and traditional deep neural networks is that on the one hand, the neurons in the network are 

interconnected in different ways. The connection method of convolutional neural networks is incomplete connection, 

which can effectively reduce the complexity and number of parameters of the network; On the other hand, convolutional 

neural networks use the same connection weights for operation, which reduces the number of weight values. 

Convolutional neural networks take the original image as input and can obtain output by training the network, thus 

avoiding the difficulties of traditional methods that require feature selection and finding classifiers. Convolutional neural 

networks have the following advantages in processing image signals: 

(1) The input image can always maintain its original structural features throughout the entire network; (2) The two 

independent processes of pattern classification and feature extraction in pattern recognition can be combined into one 

structure;(3) Using the same connection weights reduces the number of parameters that need to be trained in the network, 

making parameter training easier and the network more adaptable (Figure 1). 

 

Figure 1. Convolutional neural network structure. 

5.2 Training process 

The detailed training process of convolutional neural network parameters is as follows: 

1) The training set of voiceprint samples is randomly selected; 

2) Parameters are initialized; 

3) A set of labeled data is input into a convolutional neural network;  

4) The output vector of the intermediate layer of the convolutional neural network and the actual output vector is 

calculated; 

5) The actual output vector of the convolutional neural network is compared with the label values of the data, and the 

corresponding error is calculated by using the corresponding loss function; 

6) The adjustment amount of the threshold and the adjustment amount of each weight value in sequence are calculated; 

7) Weights and thresholds are adjusted; 

8) We perform forward calculation on the updated parameters to determine if the loss function is below the threshold. If 

it is lower, it indicates that the loss is small and the actual output is close to the label value. Then it continues to the next 

step. If greater than, it indicates a significant difference between the actual output and the label value. It should return to 

step (3) and perform the iterative calculation again; 

9) Training is over. 

The noise signal of a power transformer can reflect its own operating status information. Under different working 

conditions, the noise signal will have significant changes in the time and frequency domains. However, the changes in 

this operating status information are very complex and difficult to distinguish directly. By using a Mel-CNN-based 

power transformer voiceprint recognition model, the noise signals of power transformers under different operating states 
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can be preprocessed to obtain the Mel time-frequency spectrum. Then, the Mel time-frequency spectrum can be used as 

the original input image of the CNN network for learning, thereby achieving the extraction of power transformer 

voiceprint features and recognition of different operating state modes (Figure 2). 

 

Figure 2. Flow chat of neural network parameter training. 

6. PERFORMANCE ANALYSIS 

The noise signal of a power transformer can reflect its own operating status information. Under different working 

conditions, the noise signal will have significant changes in the time and frequency domains. However, the changes in 

this operating status information are very complex and difficult to distinguish directly. By using a Mel-CNN-based 

power transformer voiceprint recognition model, the noise signals of power transformers under different operating states 

can be preprocessed to obtain the Mel time-frequency spectrum. Then, the Mel time-frequency spectrum can be used as 

the original input image of the CNN network for learning, thereby achieving the extraction of power transformer 

voiceprint features and recognition of different operating state modes.  

6.1 Simulation experiment design 

This article obtains noise signal data of power transformers under different working states through simulation 

experiments. Due to the influence of computer calculation speed, it is not possible to measure a long period of noise 

signal like in actual measurement. The simulation time in this article is 1 second. However, when training the model, it is 

necessary to learn a large amount of voiceprint sample data. In order to overcome this difficulty, this paper extracts 

sound pressure time-domain data from multiple measurement points in the sound field simulation results to compensate 

for the lack of data. The noise signal at the corresponding position on the envelope surface of the power transformer oil 

tank is measured. The specific selection rules are as follows: measurement points are selected on the front, back, left, and 

right sides of the power transformer, with the distance between the envelope surface of the oil tank and the power 

transformer being 50 cm, the distance between the two adjacent measurement points on the left and right being 10cm, 

and the distance between the two adjacent measurement points on the top and bottom is 50 cm. Using this method, a total 

of 96 measurement points were selected for the front and rear surfaces of the fuel tank, and 54 measurement points were 

selected for the left and right surfaces of the fuel tank. A total of 150 measurement points were selected for one 

simulation. In order to prevent overfitting and improve the effectiveness of model training, it is necessary to randomly 

shuffle the extraction path of processed voiceprint sample data, and input the voiceprint samples into the model in 

random order for training and recognition, greatly ensuring the effectiveness of training. 

A convolutional neural network structure was designed using a deep network designer. Firstly, image features were 

extracted from the input image through convolution, and the image features were standardized; Secondly, activate nodes 

were through activation functions; Then, it is pulled into a one-dimensional vector through a fully connected layer for 

classification; Finally, the recognition accuracy of the test set is obtained through the classifier, and the output label is 

determined using class output. 
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6.2 Sample distribution 

To ensure the effectiveness of deep learning, it is necessary to complete the dataset partitioning of batch preprocessed 

sample data during model training. As can be seen from the previous research, under the excitation of different voltage 

levels and DC bias coefficients, the voiceprint characteristics of power transformers have a certain trend of variation. In 

order to reduce the time required for model training, this paper classifies the voiceprint data of power transformers under 

the same operating state into one category and labels them uniformly. To verify the generalization ability of the model, 

90% of the voiceprint sample data under the same label was randomly selected as the training set, and the remaining 

10% was used as the testing set. The training set is used for algorithm training, model selection, and parameter 

adjustment, while the test set is used to evaluate the recognition results of the algorithm. The sample distribution of the 

voiceprint database is shown in Table 1. 

Table 1. Sample distribution of voiceprint database. 

Operating conditions Label Number of training sets Number of testing sets 

Normal condition 1 1000 100 

Undervoltage condition 2 500 50 

Overvoltage condition 3 500 50 

DC bias 4 500 50 

Other abnormal condition 5 500 50 

Total \ 3000 300 

6.3 Learning rate and recognition accuracy 

The convergence speed of convolutional neural networks is determined by the size of the learning rate, which has a 

significant impact on the weights in the network structure, thereby affecting the final classification accuracy. It is very 

important to set an appropriate learning rate size. The learning rate cannot be set too large or too small. If it is too small, 

it will result in very small changes in weight values during each iteration, slow convergence speed of the system, and 

easy to cause local minima; When it is too large, the change in weight values during each iteration becomes very 

significant, making it difficult to find the optimal parameters for the system. This article applies empirical methods to the 

selection of learning rates. Figure 3 shows the detailed training results under different learning rates. 

 

Figure 3. Accuracy of voiceprint feature recognition under different learning rates. 

Table 2 shows the specific recognition accuracy corresponding to different learning rates. By comparison, it can be seen 

that when the learning rate is 0.001, the model has the highest recognition accuracy and the training speed is also fast. 

Therefore, a learning rate of 0.001 was selected as the optimal learning rate for the Mel-CNN model. 

Table 2. Accuracy of voiceprint feature testing at different learning rates. 

Learning rates 0.1 0.01 0.001 0.0001 

Accuracy 91.2% 93.7% 98.6% 95.0% 
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6.4 Optimizers and recognition accuracy 

Hyperparameters are important factors that affect the training speed and accuracy of convolutional neural networks. The 

optimizer is the most important hyperparameter that can affect the optimization process of reducing loss values. 

Therefore, it is necessary to choose a suitable optimizer to ensure the reduction of loss values and the improvement of 

accuracy in deep learning networks. Common optimizers include stochastic gradient descent (SGD) and adaptive 

moment estimation (Adam). In order to study the impact of different optimizers on recognition accuracy, this paper 

selected SGD and Adam optimizers for Mel-CNN recognition model tuning, with 100 iterations. During the training 

process, the dataset, network model, and other hyperparameters remained consistent. The detailed recognition 

performance of the two optimizers is shown in Figure 4. 

 

Figure 4. Accuracy of voiceprint feature recognition under different optimizers. 

The Adam optimizer can calculate different parameters and adjust the adaptive learning rate. Its advantage is that it 

determines the range of learning rate during the iteration process, ensuring that the parameters remain relatively stable 

throughout the entire training process. From Table 3, it can be seen that using the Adam optimizer can achieve a 

recognition accuracy of 97.53%, which shows better performance compared to the SGD optimizer. 

Table 3. Accuracy of voiceprint feature testing under different optimizers. 

Optimizer SGD Adam 

Accuracy 91.7% 97.53% 

6.5 Accuracy of voiceprint recognition 

Based on the above research analysis, this article selects Adam as the optimizer of the Mel-CNN voiceprint recognition 

model and sets the learning rate to 0.001. At this time, the recognition accuracy of the voiceprint recognition model for 

three operating conditions is shown in Table 4. 

Table 4. The accuracy of the voiceprint recognition model for voiceprint feature test under different working conditions. 

Operating conditions Normal Undervoltage Overvoltage DC bias Other abnormal 

Accuracy 98.1% 97.3% 96.5% 99.2% 95.2% 

The experimental results show that the proposed voiceprint recognition model has achieved high recognition accuracy 

for the voiceprint features of power transformers under different working conditions, and has excellent performance. 

7. CONCLUSION AND DISCUSSION 

This article first analyzes the sound characteristics in the rated voltage operating state, undervoltage operating state, 

overvoltage operating state, and DC bias operating state through simulation software. The noise signals obtained through 

simulation experiments under different operating states are extracted with voiceprint features. The training and 

recognition of voiceprint features were completed using deep learning methods, achieving accurate recognition of 

different working states of power transformers. 

In order to accurately identify the different working states of power transformers, preprocessing was performed on the 

noise signals under different working states. The preprocessed noise signals were then extracted with voiceprint features, 
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and Mel time-frequency spectrograms were used to replace the original noise signals. It was found that the voiceprint 

feature extraction method effectively reduced the dimensionality of the noise sample data while retaining the time-

domain and frequency-domain characteristics of the original noise signal, improving the diagnostic speed and accuracy 

of subsequent recognition.  

Finally, the structure of convolutional neural networks and how to train network parameters were described in detail. The 

construction of the voiceprint dataset and the design of the network structure were introduced. The learning rate and 

optimizer of the voiceprint model were selected. By comparing the impact of four learning rates on recognition accuracy, 

choose to set the learning rate to 0.001; By comparing the impact of two optimizers on recognition accuracy, adaptive 

moment estimation is selected as the optimizer for the voiceprint recognition model. The processed voiceprint training 

set was trained using this voiceprint recognition model, and the trained model achieved a recognition accuracy of above 

90% on the voiceprint test set. The recognition results showed the effectiveness of the voiceprint recognition model. 

However, this article only obtains the noise signals of power transformers under different working conditions through 

simulation experiments. In the future when conditions permit, the noise signals of power transformers under normal 

working conditions, under voltage working conditions, over voltage working conditions, and DC bias working 

conditions can be measured on-site to further verify the effectiveness of the voiceprint recognition model. 
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