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ABSTRACT   

Early prenatal ultrasound screening can significantly reduce neonatal mortality due to congenital heart disease(CHD). Due 
to the uniqueness of the fetal heart structures and the variety of fetal cases, the prenatal detection rate of fetal CHD is still 
quite low; therefore, an improved DenseNet is proposed to diagnose fetal CHD. Compared to the adult heart, the size of 
the fetal heart varies significantly and its location is not fixed, so a multi-scale feature fusion module is introduced into the 
network, which extracts multi-scale features in the fetal heart by combining convolutional kernels of various sizes. 
Secondly, there are complex structures and rich information in fetal ultrasound images, therefore the Efficient Channel 
Attention (ECA) mechanism is integrated into the network, which suppresses the expression of unimportant information 
and mentions the reliability of model classification. The experimental results demonstrate that the improved DenseNet 
achieves better results in the task of fetal CHD classification. Additionally, the improved DenseNet enhances the prenatal 
detection rate of fetal CHD by achieving the recall of 85% and the precision of 85.3% on the test set.  

Keywords: Congenital heart disease, echocardiography, medical image classification, attention module, multi-scale 
feature 

1. INTRODUCTION  
Congenital heart disease (CHD) is a cardiovascular malformation caused by abnormal development of fetal heart and blood 
vessel tissue. In recent years, CHD has consistently had the highest incidence of all congenital disabilities. Prenatal 
diagnosis of CHD has been shown to improve survival and reduce long-term morbidity [1].  

With the continuous development of modern ultrasound technology, fetal ultrasound screening has received more and 
more attention and emphasis. Echocardiography is a non-invasive, reproducible and convenient examination method, 
which can obtain the internal structure and function information of the heart through different views, and is the first choice 
for screening and preoperative diagnosis of CHD [2]. 

Despite the rapid development of fetal ultrasound imaging technology, the inconsistency rate between ultrasound reports 
and expert diagnostic opinions is still high, which may affect the treatment plan and treatment effect of fetal CHD. The 
reasons for this phenomenon are as follows: (1) Fetal echocardiographic images have low resolution and uneven quality, 
speckle noise and artifacts, which bring great obstacles to the diagnosis of CHD. (2) Due to the special anatomical structure 
of fetal heart compared with adult heart, fetal involuntary movement and other factors, the difficulty of fetal ultrasound 
examination is increased.  (3) Echocardiography examination requires high professional knowledge and clinical experience 
of doctors, and doctors may miss or misdiagnose due to lack of clinical experience, fatigue and other factors. 

To alleviate the above problems, this paper proposes a deep learning model with improved DenseNet to automatically 
screen and diagnose fetal CHD. The association pattern between echocardiography and fetal CHD was found automatically 
through computer-aided diagnostic analysis to improve the accuracy of classification. 

2. RELATED WORK 
2.1 CNN classification model 

Convolutional Neural Network (CNN) is a deep learning model that often have different structures for different tasks. In 
2012, a new CNN model called AlexNet [3] achieved great success in the ImageNet image recognition competition, which 
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owes its success to the deeper network structure as well as the development of GPU technology. Furthermore, deep CNNs 
are already widely used techniques for image classification applications thanks to the availability of the ImageNet dataset.  

Currently, feature extractors for various computer vision tasks show excellent performance, such as VGGNet [4], ResNet 
[5], MobileNet [6], InceptionNet [7], and DenseNet [8]. 

Despite CNN's excellent performance in a variety of tasks, gradient disappearance or explosion problems still seriously 
hinder its performance improvement. ResNet introduces the concept of a residual block, the structure of which contains a 
shortcut connection across the layers, which allows the input information to be passed directly to deeper layers of the 
network, thus alleviating the gradient vanishing problem. 2016 Huang proposed DenseNet, a densely-connected 
convolutional neural network, which is designed with dense connections between each layer of the network to achieve 
feature map reuse and effectively solve the gradient vanishing problem.  

2.2 Deep learning in fetal echocardiograms 

Current research in the field of fetal congenital heart disease (CHD) focuses on normal and abnormal classification of the 
fetal heart. Gong et al. [9] initially cropped fetal heart regions from fetal four-chamber (FC) images using the Faster-RCNN 
model in order to identify fetal CHD. They then suggested a novel model, DGACNN, to categorize the extracted regions. 
Dong et al. [10] proposed a general deep learning framework for four-chamber planar automatic quality control of fetal 
heart. In order to successfully identify particular cardiac views, Arnaout et al. [11] investigated the use of neural network 
integration to develop a model through supervised learning. They also successfully employed a rule-based classifier to 
distinguish between structurally normal hearts and complex CHDs. Qiao et al. [12] proposed a straightforward and efficient 
residual network diagnostic system. This system greatly increases the diagnostic accuracy of fetal CHD by using a 
convolutional neural network and provides a global visual interpretation during the diagnostic process. 

3. PROPOSED METHODOLOGY 
3.1 DenseNet 

DenseNet proposes a dense connection mechanism, is combining the outputs of all previous layers to get the input of the 
current layer. DenseNet has (L(L+1)) ⁄2 connections in total for a network with L layers. This dense connection mechanism 
shortens the distance between the layers of the network, further enhances the information flow between the layers, does 
feature reuse. DenseNet has shown higher performance than traditional networks in medical image processing, so the study 
chooses DenseNet as the base network for constructing the CHD classification model. 

DenseNet network employs DenseBlock and TransitionLayer structure, where each DenseBlock contains n Denselayer 
layers. These layers output feature maps with the same dimensions, and adopt the above-mentioned dense connection 
mechanism between layers, and its basic structure consists of a series of BN, ReLU, and Conv operations, as shown in 
Figure 1. Two adjacent DensenBlocks are connected by the TransitionLayer structure, and the feature maps size is reduced 
by using convolution and pooling operations. 

 
Figure 1. Structure of DenseBlock and TransitionLayer. 
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Since the diagnosis of CHD in echocardiography requires the observation of cardiac structures, such as the four chambers 
of the fetal heart, the interatrial septum, and the interventricular septum. These cardiac structures are usually of different 
scales and sizes, so we have enhanced the Denselayer by adding a multi-scale feature fusion module.  

Inception Block [13] uses convolution kernels of various sizes to create receptive fields of various sizes, and finally 
performs fusion operations on the multi-scale features that are produced. The basic structure of the block consists of four 
parallel paths: one 1x1 convolution, one 1x1 convolution + 3x3 convolution, one 1x1 convolution + 5x5 convolution and 
one 3x3 maximum pooling + 1x1 convolution. In order to increase the computational efficiency of the model while keeping 
the same receptive field, two 3x3 convolutions are used in place of the 5 x 5 convolution in this instance. The module 
introduces a 1 x 1 convolution before each 3 x 3 convolution to adjust the number of channels in the feature map and add 
non-linear features to improve computational efficiency. The Inception Block is capable of extracting multi-scale features 
in a single module by using convolution kernel and pooling operations of various sizes in parallel. This makes the features 
richer, and also means that the final classification is more accurate. 

 
Figure 2. Improved Denselayer structure. 

Figure 1 depicts the original network structure's Denselayer structure for deep feature extraction, which makes use of a 
single 1x1 and 3x3 convolution with a single receptive field. This structure is not conducive to multi-scale feature 
extraction. Consequently, the Inception Block is introduced into the above layer structure to increase the width of the 
network while obtaining a multi-scale receptive field, thus improving the representation capability of the network. 
Meanwhile, the combination of Dropout, can randomly select a part of neurons and set its output to 0 to reduce overfitting 
and enhances the generalisation ability of the model. The Improved Denselayer is shown in Figure 2. 

3.2 ECA Block 

In order to improve the model performance with less increase in model complexity, ECA attention mechanism is introduced 
in the network. It is an efficient channel attention module which determines the interactions between channels and extracts 
the dependencies between channels by fast 1D convolution. 

The ECA Block [14] is comprised of an effective excitation module for modeling cross-channel interactions and a 
squeezing module for aggregating global spatial information. By considering only direct interactions between each channel 
and its k-nearest neighbors, this block controls model complexity. The ECA Block, after aggregating the convolutional 
features using the GAP without dimensionality reduction, first adapts itself to determine the size of the convolutional 
kernel k, then 1D convolution is performed, followed by a Sigmoid function to learn the weights of each channel. 
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Figure 3. Structure of Improved Denselayer with the ECA Block. 

In order to further strengthen the performance of the DenseNet model and improve the feature extraction ability of the 
network, the ECA attention block is added to the Improved Denselayer structure. The ECA Block can give different 
weights to the feature channels to help the model better capture the key information, thus improving the performance of 
the model. At the same time, with the characteristics of small parameter count and simple structure, the block can be 
conveniently integrated into the fetal congenital heart disease classification model. The improved layer structure is shown 
in Figure 3. 

3.3 Improved DenseNet 

The standard DenseNet121 consists of four DenseBlocks and three TransitionLayers, where each DenseBlock consists of 
6, 12, 24, and 16 Denselayer layers, respectively. The layer structure in each DenseBlock was replaced with Improved 
Denselayer with multi-scale feature fusion and ECA Block, and the number of Improved Denselayer in each DenseBlock 
was adjusted to 2, 3, 3, 2 due to the high complexity of the improved model and the small amount of fetal ultrasound data, 
and the adjusted model is noted as Improved DenseNet, and Figure 4 depicts the network's general architecture. 

 
Figure 4. Network architecture. 

4. EXPERIMENTAL RESULTS AND ANALYSES 
4.1 Datasets and evaluation measures 

The dataset used ultrasound data from the Shandong Provincial Hospital, which was mainly collected between 18 and 28 
weeks of gestational age. The dataset includes 43 segments of echocardiography videos and 654 images of the fetal heart 
at the end-systole in fetal four-chamber (FC)view. End-systolic images of the heart are medically essential for assessing 
cardiac structure and function, which allows for a clearer view of the movement and thickness of the ventricular walls and 
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assessment of whether the atria and ventricles are normal in size, especially in the presence of atrial septal defects or 
ventricular septal defects. Therefore, 81 images of the fetal heart at end-systole were obtained by processing 43 
echocardiographic video clips. 

The original FC views included some personal information about the patient and other biological tissues that were not 
relevant to the diagnosis of CHD, so image preprocessing was carried out on these FC views. In order to obtain the 
echocardiogram's region of interest, the fetal heart position was first identified and the region of interest in the images was 
extracted. Then, by clipping and resizing the echocardiogram to remove a large amount of invalid background, 256×256 
image blocks containing the fetal heart are obtained. To avoid the network model overfitting, random vertical flipping, 
panning, and random horizontal flipping were also applied to the fetal heart dataset. The image preprocessing process for 
the fetal FC view is shown in Figure 5. Finally, the dataset was divided into a training set and a test set; 630 fetal FC views, 
including 420 images of a healthy fetal heart and 210 images of a CHD, made up the training set. To assess the model's 
performance, 80 FC views—40 of which are images of healthy fetal hearts and 40 of which are images of fetal hearts with 
CHD—that do not appear in the training set are utilized in the test set. 

The deep learning framework used in this experiment is Pytorch. The batch size of each training session is set to 16, the 
training steps are 50 epochs, the optimization process employs the Adam optimizer, the dropout rate is set at 0.3, and the 
initial learning rate is 0.0001. 

 
Figure 5. Image pre-processing process. 

The confusion matrix yields three main metrics that we use to assess our proposed model, including precision, recall and 
F1-score as shown in Equation 1, Equation 2 and Equation 3. In the classification task, the F1-score is an evaluation metric 
that combines precision and recall to assess the performance of the model. Therefore, the model performs better in 
identifying fetal CHD when the precision values are greater, and the model is more sensitive to fetal CHD when the recall 
values are larger. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
(1) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
(2) 

𝐹𝐹1 =
2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅

(3) 

 
4.2 Comparison and analysis of experimental results 

The experiments were conducted according to the experimental setup. In order to prove the rationality of the proposed 
network, VGG16, AlexNet, GoogLeNet, ResNet50, and DenseNet121 were used as comparison experiments, and the 
comparison results are shown in Table 1. 

Firstly, the ultrasound heart images are split into two categories by the classification algorithm: normal images and cardiac 
diseased images. The classification results are shown in Table 1, and the table shows that the Improved DenseNet improves 
the classification precision, recall and F1-score over the standard DenseNet121, achieving the precision of 85.3%, the 
recall of 85% and F1-score of 85.1%. The standard DenseNet121 outperformed the other network models with a precision 
of 79.6%, a recall of 78.8% and an F1-score of 79.2%. The above data indicate that the improved model is more effective 
in the classification of fetal CHD. 

Secondly, the effectiveness of the modules was verified by ablation experiments, and the effects of each module on the 
classification results are shown in Table 2. The table shows that after blending Inceptoin Block in the network to form 
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Improved Denselayer, the performance of the network is all higher than other traditional network structures. After fusion, 
multi-scale information is introduced into the network, which improves the model's ability to understand and represent 
images. The enhancement effect is obvious from the data, indicating that the fusion module is effective. Adding the ECA 
Block to Improved Denselayer improved the precision of the network model by 2.7%, demonstrating that the addition of 
the attention mechanism can improve the model's diagnosis of fetal CHD. 

Table 1. Experimental comparison results. 

Model Precision Recall F1-score 

VGG16 61.4% 61.2% 61.3% 

AlexNet 68.6% 67.5% 68% 

GoogLeNet 70.6% 68.4% 69.5% 

ResNet50 75% 73.8% 74.4% 

DenseNet121 79.6% 78.8% 79.2% 

Ours 85.3% 85% 85.1% 

 
Table 2. Results of ablation experiments. 

Model InceptionBlock ECA Block Precision Recall F1-score 

 √  82.6% 82.5% 82.5% 

  √ 84.9% 81.2% 83% 

Ours √ √ 85.3% 85% 85.1% 

5. CONCLUSION 
Despite advances in ultrasound imaging, the prenatal detection rate of fetal congenital heart disease remains meager. The 
complex anatomy of the fetal heart, as well as its small size and the diversity of fetal cardiac anomalies, add to the 
complexity of the examination. In this paper, we combine the multi-scale feature fusion module and the attention 
mechanism on the DenseNet model to enhance the extraction of multi-scale features and the capture of key information in 
fetal echocardiograms, thus improving the accuracy of fetal CHD classification. At the same time, in order to prevent 
overfitting of the network model, the number of Denselayer is adjusted. On the test dataset, the improved model had the 
precision of 85.3% and the recall of 85% in identifying fetal congenital heart disease, which effectively improved the 
prenatal detection rate of fetal CHD. 
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