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ABSTRACT

Purpose: The present study aimed to construct classification models for pulmonary adenocarcinoma using computed
tomography (CT)‐based radiomics features and random forest method.

Methods: A total of 289 patients with 295 lung adenocarcinomas were included in this study. A total of 1066 CT images
were extracted. The final data set was randomized into the training set and validation set at the ratio of 80%:20%. A total
of 1082 features were captured from a semi‐automatic segmentation method segmented lesion of a CT image. 9 optimal
radiomic features obtained from root mean squared error (REMS) through cross validation and 14 radiographic
characteristic features were selected to construct a random forest classification model. At the same time, compared with
the results of the Support Vector Machine (SVM), Logistic Regression and C5.0 algorithm.

Results: The area under the curve (AUC) scores of training feature set, radiographic characteristics feature set, and the
optimal radiomic feature set for testing dataset were 0.974, 0.483, and 0.835, respectively, and the corresponding AUC
values for validation dataset were 0.964, 0.915, and 0.841, separately.

Conclusion: The developed random forest‐based classification models using radiomics features and radiographic
features of CT showed a relatively acceptable performance in lung adenocarcinoma and could assist clinical rapid
diagnosis and triage.
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1. INTRODUCTION
Lung cancer, particularly non‐small cell lung cancer (NSCLC), remains a major global health challenge due to its high
incidence and mortality rates [1, 2]. NSCLC includes subtypes such as squamous carcinoma, pulmonary adenocarcinoma,
and large cell carcinoma, accounting for approximately 85% of all lung cancer cases [3‐5]. Among these, pulmonary
adenocarcinoma can be further classified into adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA),
and invasive adenocarcinoma (IAC), each requiring different treatment approaches. Computed tomography (CT)
imaging is a primary diagnostic tool for lung adenocarcinoma. However, distinguishing between the subtypes of
pulmonary mini‐nodules can be challenging due to limited resolution and the sheer volume of images needing
interpretation [6]. Therefore, a non‐invasive, repeatable, and quantitative method for the classification of these subtypes
would be highly beneficial in clinical practice.

Despite the life‐saving benefits of early CT detection, this imaging modality has several limitations, including high rates
of detection of indeterminate pulmonary nodules [7‐10]. Radiomics, which involves the extraction of quantitative
features from medical images, offers a promising approach to this challenge [10‐14]. This approach allows doctors to
gain a more comprehensive view of lesions and enables quantitative, high‐throughput analyses of lesion development

International Conference on Future of Medicine and Biological Information Engineering 
(MBIE 2024), edited by Yudong Yao, Xiaoou Li, Xia Yu, Proc. of SPIE Vol. 13270, 

132700C · © 2024 SPIE · 0277-786X · doi: 10.1117/12.3048034

Proc. of SPIE Vol. 13270  132700C-1



and progression [15‐19] which can reflect both biological and medical image information of lesions, providing valuable
insights for diagnosis, prognosis, and disease prediction[20‐25].

This study aims to develop a model for the classification of pulmonary adenocarcinoma subtypes using radiomics and a
random forest algorithm. The integration of advanced feature selection techniques with a robust classification model is
anticipated to significantly improve diagnostic accuracy

2. MATERIALS ANDMETHODS
The study was approved by the Ethics Board of Shanghai University of Medicine & Health Sciences. The Ethics
Committee gave up the written informed consent of the patient because it was a retrospective experiment and did not
involve patient privacy.

2.1 Data collection and preprocessing

A total of 295 lesions were detected in 289 patients at the Shanghai Public Health Clinical Center (hospital 1).
Additionally, in a recent examination, 127 patients with 138 lesions were re‐selected at the same hospital (hospital 1.1).
The basic patient information is detailed in Table 1. The selection criteria included: (1) patients who had undergone thin‐
slice chest CT imaging, (2) patients who had undergone an unenhanced chest CT exam, and (3) patients diagnosed with
lung adenocarcinoma by doctors. Among these patients, one pGGN was detected in 187 patients and two in 6 patients.
All lesions were pathologically diagnosed as 174 MIA, 54 AIS, and 67 IAC.

For the study, 236 lesions were allocated to the training set, while 59 were included in the testing set. Two to eight
images with clear features were selected from the CT scans of each lesion, resulting in 853 CT images in the training set
and 213 in the testing set. Additionally, 138 lesions diagnosed as 75 MIA, 36 AIS, and 27 IAC from two other hospitals
were included. One to three images with clear features were selected from the CT scans of each lesion in this new dataset,
yielding 267 CT images in the validation set. The patient selection flowchart is depicted in Figure 1.

Table 1. Demographic characteristics

Full Dataset Training & Testing
Dataset Validation Dataset p value

Age 52.26±1.54 52.46±0.64 51.78±3.02 *
Long diameter 9.69±0.15 9.73±0.18 9.60±0.25 *
Short diameter 7.62±0.12 7.65±0.15 7.56±0.21 *

Sex 176M,240F 113M,176F 63M 64F

Ages and size are shown as mean ± standard deviation;
M male, F female
*p value < 0.05
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Figure 1. Flow chart of case sample selection

2.2 CT scanning

An unenhanced chest CT exam was performed during the entire lung scan of each patient with a United‐Imaging 760 CT
device (42‐126 mA 120 kV, slice thickness of 1 mm), a Siemens Emotion 16 CT device (34‐123 mA, 130 kV, 1 mm)
and a Siemens Perspective 77427 CT device (155mA, 110kV, 1mm), under a 512×512 resolution.

2.3 Feature extraction

A semi‐automated, unsupervised method was employed to segment the region of interest (ROI) for each CT image[26].
This segmentation was subsequently confirmed by a radiologist with a decade of experience in chest CT interpretation.

Radiographic characteristics were independently evaluated by two experienced thoracic radiologists, with 6 and 13 years
of experience in chest CT interpretation, respectively, who were blinded to the pathological results. Discrepancies
between the observers were resolved through consensus. The radiographic characteristics analyzed for each lesion
included: (1) margin (clear, blurred), (2) lobulation (absent, present), (3) spiculation (absent, present), (4) pleural
attachment, including pleural tag and indentation (absent, present), (5) air bronchogram (absent, present), (6) vessel
change (absent, present), and (7) bubble lucency (absent, present) (Table 2).

A total of 1,068 features were extracted from the ROI using commercial software (PyRadiomics 3.0.1)[27]. These
features included tumor size, shape, first‐order statistical descriptors (histogram features), and high‐order texture features
(gray level co‐occurrence matrix and gray level run length). The original images were normalized prior to feature
extraction.
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Table 2. The Parameters of lesions in datasets

Training dataset Testing dataset Validation dataset

Category

MIA 473

130

250

127

40

46

150

49

68

AIS

IAC

Lobe
Left 345

508

85

128

115

152Right

Segment

Left
S1+2 124
S3 73
S4 20
S5 15

S6 48
S8 13
S9 29
S10 23

S1+2 20
S3 22
S4 3
S5 4

S6 17
S8 3
S9 4
S10 12

S1+2 42
S3 22
S4 4
S5 5

S6 14
S8 3
S9 14
S10 11

Right

S1 98
S2 121
S3 88
S4 28
S5 10

S6 58
S7 10
S8 54
S9 35
S10 6

S1 24
S2 34
S3 16
S4 13
S5 4

S6 16
S7 1
S8 9
S9 8
S10 3

S1 22
S2 38
S3 22
S4 17
S5 6

S6 21
S7 5
S8 14
S9 7
S10 0

Margin
Blurred 786 195 243
Clear 67 18 24

Lobulation
Present 651 162 192
Absent 202 51 75

Spiculation
Present 637 156 191
Absent 216 57 76

Pleural
Attachment

Present 236 50 61

Absent 617 163 206

Air
Bronchogram

Present 427 114 134

Absent 426 99 133

Vessel Change
Present 706 187 227
Absent 147 26 40

Bubble Lucency
Present 190 49 48
Absent 663 164 219

Right lung, superior lobe
Apical segment [S1]
Posterior segment [S2]
Anterior segment [S3]
Right lung, middle lobe
Lateral segment [S4]
Medial segment [S5]

Right lung, inferior lobe
Superior segment (Fowler) [S6]
Medial basal segment [S7]
Anterior basal segment [S8]
Lateral basal segment [S9]

Posterior basal segment [S10]

Left lung, superior lobe
Apicoposterior segment [S1+2]

Anterior segment [S3]
Superior lingular segment [S4]
Inferior lingular segment [S5]

2.4 Feature selection

Given that the initial number of features extracted was close to the number of patients, a systematic feature selection
process was implemented to avoid overfitting. The feature set was divided into radiographic characteristics and radiomic
features. All radiographic characteristic features were preserved due to their clinical relevance. For the radiomic features,
an initial screening was conducted where features with low variance were removed as they provide minimal information
and can introduce noise. Furthermore, highly correlated features (correlation coefficient > 0.9) were identified, and one
feature from each pair was removed to reduce multicollinearity. Feature importance was then assessed using the
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'RandomForest' [28] package to compute the 'MeanDecreaseGini' metric, ranking features in decreasing order of their
importance scores. To determine the optimal subset of radiomic features, cross‐validation was employed, calculating the
root mean squared error (RMSE) for various feature subsets and identifying the subset that minimized RMSE. This
iterative process ensured the retention of the most predictive features. Additionally, the correlation of each feature in the
optimal radiomic feature set was analyzed to ensure that the selected features were not redundant and provided unique
information. The final selected features included original_shape2D_Perimeter, squareroot_firstorder_90Percentile,
original_shape_Maximum2DDiameterRow, wavelet.LL_glcm_ClusterShade,
wavelet.HL_glszm_SmallAreaLowGrayLevelEmphasis, original_shape2D_Sphericity,
diagnostics_Image.original_Mean, wavelet.LL_firstorder_Minimum, and logarithm_firstorder_90Percentile.

The optimal radiomic feature subset was then combined with the radiographic characteristics feature set to form a
comprehensive training feature set, which was used for model training. This thorough feature selection process ensured
that the final model included only the most relevant and non‐redundant features, thereby enhancing its predictive
performance and robustness.

Figure 2. The optimal radiomic feature subset and its performance are obtained through cross validation. (a) represents the
performance of cross validation. (b) represents the correlation diagram of 9 features. (c) represents the important value of 9
features.

2.5 Model training and validation

Based on the preliminary training of all features, the optimal values of parameters 'mtry' and 'ntree' required by the
random forest model were calculated (mtry=20, ntree=900, Figure 3). Then, on the premise of the same parameters, the
random forest model was trained with those three feature sets respectively (training feature set as model 1, radiographic
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characteristics feature set as model 2 and the optimal radiomic feature set as model 3). At the same time, SVM, Logistic
Regression and C5.0 algorithm were used to verify the results.

Figure 3. Optimal parameters of random forest model. (a) represents the performance of the ‘mtry’. (b) represents the
performance of the ‘ntree’.

2.6 Statistical analysis

Quantitative data were presented as mean ± SD or median (25th–75th percentile), while qualitative data were described
as counts (n). Comparisons between groups for qualitative variables were performed using Fisher's exact test, and
comparisons for quantitative variables were performed using either a t‐test or the Wilcoxon test. A p‐value of less than
0.05 was considered statistically significant.

The Area Under the Curve (AUC) represents the degree of separability and serves as a summary measure of the accuracy
of a quantitative diagnostic test. The Receiver Operating Characteristic (ROC) curve, a commonly used graph to
summarize the performance of a classifier across all possible thresholds, is generated by plotting the true positive rate (y‐
axis) against the false positive rate (x‐axis). The ROC curve and AUC were used to evaluate the diagnostic performance,
precision, and discrimination accuracy of the models.

All statistical analyses were performed using R statistical software (http://www.Rproject.org, version 3.6.0) with the
following packages: 'randomForest', 'ggplot2', 'caret', 'pROC', 'e1071', and 'reshape2'.

2.7 Results

The performance of the radiomics model constructed using random forest was evaluated by precisions and accuracies.
The ROC curves of random forest models based on three feature set are shown in Figure 4. Because there are three types
of lesions, the subsequent evaluation is to combine two of them into one and compare them with the remaining one (MIA
represents the comparison between MIA and IAC & AIS, AIS represents the comparison between AIS and IAC &MIA,
IAC represents the comparison between IAC and MIA & AIS).

For the testing dataset, the AUC scores of model 1, model 2, and model 3 were 0.974, 0.483, and 0.835, respectively.
The sensitivity values of model 1, model 2, and model 3 at the optimum critical point were 0.873(MIA:0.967, AIS:0.825,
IAC:0.826), 0.814(MIA:0.866, AIS:0.750, IAC:0.826), and 0.641(MIA:0.902, AIS:0.378, IAC:0.642). The specificity
values of model 1, model 2, and model 3 at the optimum critical point were 0.936(MIA:0.837, AIS:0.994, IAC:0.976),
0.897(MIA:0.791, AIS:0.965, IAC:0.934), and 0.829(MIA:0.589, AIS:0.972, IAC:0.925).

For validation dataset, the AUC scores of model 1, model 2, and model 3 were 0.964, 0.915, and 0.841, respectively. The
sensitivity values of model 1, model 2, and model 3 at the optimum critical point were 0.867(MIA:0.940, AIS:0.837,
IAC:0.824), 0.825(MIA:0.880, AIS:0.756, IAC:0.838), and 0.648(MIA:0.927, AIS:0.245, IAC:0.772). The specificity
values of model 1, model 2, and model 3 at the optimum critical point were 0.932(MIA:0.855, AIS:0.986, IAC:0.955),
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0.906(MIA:0.803, AIS:0.949, IAC:0.965), and 0.798(MIA:0.521, AIS:0.986, IAC:0.886). The performance of the
random forest models based on the three feature sets are shown in the Table 3.

At the same time, SVM, Logistic Regression and C5.0 algorithm used the same training dataset and training feature set
to train the model. Evaluate the performance of the model on the testing dataset. For SVM model, the AUC score was
0.734. The sensitivity values were MIA:0.921, AIS:0.750, IAC:0.348. The specificity values were MIA:0.547, AIS:0.959,
IAC:0.976. For Logistic Regression model, the AUC score was 0.780. The sensitivity values were MIA:0.850,
AIS:0.750, IAC:0.587. The specificity values were MIA:0.709, AIS:0.971, IAC:0.892. For C5.0 model, the AUC score
was 0.700. The sensitivity values were MIA:0.843, AIS:0.475, IAC:0.522. The specificity values were MIA:0.558,
AIS:0.965, IAC:0.886. The details are shown in the table 4.

Figure 4. The performance of random forest model based on different feature sets on testing dataset and verification dataset.
The yellow line represents the performance of the model in MIA compared with AIS&IAC. The blue line represents the
performance of the model in AIS compared with MIA&IAC. The red line represents the performance of the model in IAC
compared with MIA&AIS.
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Table 3. The performance of random forest models in testing and validation datasets

sensitivity precision specificity f1
testing validation testing validation testing validation testing validation

Model1
MIA 0.967 0.94 0.898 0.892 0.837 0.855 0.932 0.916
AIS 0.825 0.837 0.971 0.932 0.994 0.986 0.891 0.882
IAC 0.826 0.824 0.905 0.862 0.976 0.955 0.864 0.842

Model2
MIA 0.866 0.880 0.859 0.852 0.791 0.803 0.863 0.866
AIS 0.750 0.756 0.833 0.771 0.965 0.949 0.789 0.763
IAC 0.826 0.838 0.776 0.891 0.934 0.965 0.800 0.864

Model3
MIA 0.902 0.927 0.750 0.713 0.589 0.521 0.819 0.806
AIS 0.378 0.245 0.737 0.800 0.972 0.986 0.500 0.375
IAC 0.642 0.772 0.739 0.647 0.925 0.886 0.687 0.704

Table 4. The performance of validation models in testing datasets

sensitivity precision specificity f1

SVM
MIA 0.921 0.75 0.547 0.827
AIS 0.75 0.811 0.959 0.779
IAC 0.348 0.8 0.976 0.485

LOGISTIC
MIA 0.85 0.812 0.709 0.831
AIS 0.75 0.857 0.971 0.8
IAC 0.587 0.6 0.892 0.593

C5.0
MIA 0.843 0.738 0.558 0.787
AIS 0.475 0.76 0.965 0.585
IAC 0.522 0.558 0.886 0.539

Model1
MIA 0.967 0.898 0.837 0.932
AIS 0.825 0.971 0.994 0.891
IAC 0.826 0.905 0.976 0.864

3. DISCUSSION
This study demonstrates the potential of using a random forest‐based classification model incorporating radiomics and
radiographic features for the differentiation of pulmonary adenocarcinoma subtypes. The key findings indicate that the
combination of radiomic features with traditional radiographic characteristics significantly enhances the accuracy of lung
adenocarcinoma classification compared to using either feature set alone.

The random forest model achieved high AUC scores for both training and validation datasets, highlighting its robustness
and reliability. The model's ability to effectively integrate radiomic features, which capture complex imaging patterns not
visible to the naked eye, with conventional radiographic features, underscores the importance of a multifaceted approach
in medical imaging analysis. This combined feature set resulted in a more comprehensive representation of the lesions,
improving the model's diagnostic performance.

Radiomics offers a transformative approach by converting medical images into high‐dimensional data that reflect
underlying tumor biology. The study's findings support the utility of radiomics in clinical settings, providing a non‐
invasive and reproducible method for lesion characterization. The enhanced ability to classify subtypes of pulmonary
adenocarcinoma can lead to more personalized treatment strategies, potentially improving patient outcomes.

Despite the promising results, several limitations were noted. The study was conducted at a single center with a relatively
small sample size, which may limit the generalizability of the findings. Potential biases in the dataset due to retrospective
data collection and selection criteria may affect the model's performance. Additionally, the semi‐automatic segmentation
method, while effective, still involves manual steps that could introduce variability. The generalizability of the model to
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different populations or imaging protocols remains uncertain due to the specific CT imaging protocols used in this study.
Future research should aim to develop fully automated segmentation techniques to further standardize the analysis and
include multi‐center data to validate the model across diverse patient cohorts and imaging conditions.

Furthermore, the study's feature selection process, while rigorous, still resulted in a large number of features that require
manual assessment by clinicians. Incorporating additional clinical data and expanding the radiomics feature set could
enhance the model's accuracy and clinical applicability.

To address these limitations and improve the model's utility, future studies should focus on multi‐center collaborations to
validate the findings across diverse populations and imaging equipment. Increasing the dataset size and diversity would
enhance the model's robustness and applicability in different clinical scenarios. Additionally, integrating clinical data
such as patient history and genetic markers could provide a more holistic approach to lung adenocarcinoma classification.
This study highlights the significant potential of radiomics and machine learning in enhancing lung cancer diagnostics.
The developed model represents a step forward in the integration of advanced imaging techniques with artificial
intelligence, paving the way for more precise and personalized cancer care. Further research and technological
advancements will be crucial in fully realizing the benefits of this innovative approach in clinical practice.

4. CONCLUSIONS
In conclusion, we developed an automatic pulmonary adenocarcinoma grading model utilizing the most significant
radiomics features through a random forest method. This model demonstrates potential in aiding rapid clinical diagnosis
and triage. Future research should focus on extracting additional radiomics parameters and incorporating patient clinical
characteristics to enhance model accuracy.
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