An analysis of optical scintillation and fade on long slant-path atmospheric channels is presented via a direct comparison between wave-optics-based numerical simulations and experimental flight data from a ground-to-aircraft optical communication link. In addition to physically modeling the propagation through slant-path atmospheric turbulence, the numerical simulations include simultaneously the effects of mechanical pointing jitter, aperture-averaging, and first-order scattering/absorption models. The power spectral density, fade probability, and mean fade time of the simulated power fluctuations are studied and validated against measurements taken at slant-path distances ranging from 60 to 113 km and aircraft speeds up to 70 m / s.
KEYWORDS: Aerospace engineering, New and emerging technologies, Space operations, Data communications, Telecommunications, Quantum key distribution, Mobile communications, Video, Space robots, Robotics
The National Aeronautics and Space Administration (NASA) is continuously working in furthering its space and aero communications capabilities required for the successful accomplishment of its aerospace missions. With the ever present demand for higher communication data rates and larger bandwidth required by future space exploration missions, optimization of the communications systems supporting such missions is necessary to ensure that critical scientific data and high definition video and imagery of human and robotic exploration is properly transmitted back to Earth. In the aeronautics side, the envisioned increase in aircraft volumes under the Urban Air Mobility (UAM) and Advanced Air Mobility (AAM) ecosystems could benefit from communications capabilities impervious to interference and free from spectrum limitations constraints. This work discusses examples of GRC’s ongoing technology development and integration efforts relevant to the aforementioned scenarios. In particular, the ability to increase the versatility, affordability, and reliability of ground-based optical receivers for space-to-ground communications will be presented. Our current activities on the development of highly secure airborne laser communications links augmented with Quantum Key Distribution (QKD) will also be discussed, as well as scenarios in which optical communications could be beneficial to UAM/AAM. The status of efforts in quantum communications, high rate optical networks, and on the development of current efforts to demonstrate integrated Radio/optical communications (iROC) will also be addressed.
Modeling the effects of atmospheric turbulence on optical beam propagation is a key element in the design and analysis of free-space optical communication systems. Numerical wave optics simulations provide a particularly useful technique for understanding the degradation of the optical field in the receiver plane when the analytical theory is insufficient for characterizing the atmospheric channel. Motivated by such an application, we use a splitstep method modeling the turbulence along the propagation path as a series of thin random phase screens with modified von Karman refractive index statistics using the Hufnagel-Valley turbulence profile to determine the effective structure constant for each screen. In this work, we employ a space-to-ground case study to examine the irradiance and phase statistics for both uniformly and non-uniformly spaced screens along the propagation path and compare to analytical results. We find that better agreement with the analytical theory is obtained using a non-uniform spacing with the effective structure constant for each screen chosen to minimize its contribution to the scintillation in the receiver plane. We evaluate this method as a flexible alternative to other standard layered models used in astronomical imaging applications.
By utilizing a general purpose finite element (FE) code, the dynamic response of a rotor system was numerically studied in order to assess physical effects that are typically not taken into account using traditional rotordynamic codes. This included the allowance for disk flexibility as well as conducting a simultaneous heat transfer analysis that resulted in varying temperatures in the axial and radial directions. The numerical study utilized a generic, multi-disk model with a flexible hollow shaft. The Campbell diagrams and the mode shapes showed that neglecting any of the additional influences may cause errors regarding the predicted rotor dynamic response. By increasing the fidelity of the rotor model and accounting for the various effects, the slight signal modifications due to damage can be more easily recognized allowing for increased accuracy during rotor health monitoring.
For validating physics based analytical models predicting spallation life of environmental barrier coating (EBC) on fiber reinforced ceramic matrix composites, the fracture strength of EBC and kinetics of crack growth in EBC layers need to be experimentally determined under engine operating conditions. In this study, a multi layered barium strontium aluminum silicate (BSAS) based EBC-coated, melt infiltrated silicon carbide fiber reinforced silicon carbide matrix composite (MI SiC/SiC) specimen was tensile tested at room temperature. Multiple tests were performed on a single specimen with increasing predetermined stress levels until final failure. During loading, the damage occurring in the EBC was monitored by digital image correlation (DIC). After unloading from the predetermined stress levels, the specimen was examined by optical microscopy and computed tomography (CT). Results indicate both optical microscopy and CT could not resolve the primary or secondary cracks developed during tensile loading until failure. On the other hand, DIC did show formation of a primary crack at ~ 50% of the ultimate tensile strength and this crack grew with increasing stress and eventually led to final failure of the specimen. Although some secondary cracks were seen in the DIC strain plots prior to final failure, the existence of these cracks were not confirmed by other methods. By using a higher resolution camera, it is possible to improve the capability of DIC in resolving secondary cracks and damage in coated specimen tested at room temperature, but use of DIC at high temperature requires significant development. Based on the current data, it appears that both optical microscopy and CT do not offer any hope for detecting crack initiation or determining crack growth in EBC coated CMC tested at room or high temperatures after the specimen has been unloaded. Other methods such as, thermography and optical/SEM of the polished cross section of EBC coated CMC specimens stressed to predetermined levels and cycled to certain time at a given stress need to be explored.
With continual improvement in computing power and software codes that simulate multiple physical effects, complex analyses can be performed that allow for more accurate modeling of real world systems. Here, a general purpose finite element (FE) code was utilized to conduct a rotordynamic assessment of a rotor system containing a flexible disk. Typically, specialized rotordynamic software packages make numerous assumptions to simplify the various types of rotor response calculations. Disks, for example, are commonly assumed rigid and are represented by lumped masses or discrete beam elements. Such idealizations may cause inaccuracies when calculating critical speeds for rotor systems that involve a relatively flexible disk. By utilizing a general purpose FE approach, where multiple rotational effects are considered, a more accurate model can be developed that includes the dynamic contributions of a flexible disk. This paper illustrates the rotordynamic analysis of a generic, yet realistic, compressor with a shrouded impeller model, without extensive geometric simplification. Furthermore, through the utilization of the fully featured geometry, several dynamic effects are demonstrated to have a significant influence on the rotor system’s Campbell diagram. The dynamic effects investigated include disk flexibility, stress stiffening, and spin softening. It is shown that neglecting any of these may cause significant errors regarding the rotordynamic analysis predictions.
KEYWORDS: Chemical elements, Optimization (mathematics), Data modeling, Finite element methods, Magnetism, Mathematical modeling, Structural health monitoring, Actuators, Genetics, System identification
A structural change quantification methodology is explored in which the magnitude and location of a structural alteration is identified in a rotor system. The proposed structural alterations may be interpreted as physical damage to a structure, in efforts of advancing structural health monitoring activities. The structural change quantification strategy
involves the use of resonance and antiresonance frequencies which are collected from several transfer functions calculated from a finite element rotor model. These values are collected and included in an objective function which outputs an error value that is subsequently minimized. The resulting objective contains sufficient information to identify the dynamic characteristics of the rotor in both the frequency and spatial domains. A finite element model with carefully selected tunable parameters is iteratively adjusted using a numerical optimization algorithm to determine the source of the structural change. The numerical studies presented in this work utilize a generic rotor model with features such as a hollow shaft, two ball bearings, several disks, and multiple material layers. The method used for structural excitation is assumed to utilize magnetic actuators for nonintrusive operations. First, the investigations optimize the objective function using a hybrid optimization approach which applies both the NSGA-II genetic and the Nelder-Mead optimization algorithms. The objective function is optimized to maximize the sensitivity of the rotor’s finite elements to detect structural change. Second, a simulated local structural change is implemented in which the detection methodology is employed to locate. An investigation of the effect of error in the simulated data on the prediction’s accuracy is addressed.
High-Speed Machining (HSM) spindles equipped with Active Magnetic Bearings (AMBs) have been envisioned to be
capable of automated self-identification and self-optimization in efforts to accurately calculate parameters for stable
high-speed machining operation. With this in mind, this work presents rotor model development accompanied by
automated model-updating methodology followed by updated model validation. The model updating methodology is
developed to address the dynamic inaccuracies of the nominal open-loop plant model when compared with experimental
open-loop transfer function data obtained by the built in AMB sensors. The nominal open-loop model is altered by
utilizing an unconstrained optimization algorithm to adjust only parameters that are a result of engineering assumptions
and simplifications, in this case Young's modulus of selected finite elements. Minimizing the error of both resonance
and anti-resonance frequencies simultaneously (between model and experimental data) takes into account rotor natural
frequencies and mode shape information. To verify the predictive ability of the updated rotor model, its performance is
assessed at the tool location which is independent of the experimental transfer function data used in model updating
procedures. Verification of the updated model is carried out with complementary temporal and spatial response
comparisons substantiating that the updating methodology is effective for derivation of open-loop models for predictive
use.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.