This paper proposes an intestine segmentation method to segment intestines from CT volumes for helping clinicians diagnose intestine obstruction. For large-scale labeled datasets, fully-supervised methods have shown superior results. However, medical image segmentation is usually difficult to achieve accurate prediction due to the limited number of labeled data available for training. To address this challenge, we introduce a novel multi-view symmetrical network (MVS-Net) for intestine segmentation and incorporate bidirectional teaching to utilize unlabeled datasets. Specifically, we design the MVS-Net, which can use different sizes of convolution kernels instead of a fixed kernel size, enabling the network to capture multi-scale features from images’ different perceptual fields and ensure segmentation accuracy. Additionally, the pseudo-labels are generated by bidirectional teaching, which can make the network captures semantic information from large-scale unlabeled data for increasing the training data. We repeated the experiment five times, and used the averaged result on the intestines dataset to represent the segmentation accuracy of the proposed method. The experimental results showed the average Dice was 78.86%, the average recall 84.50%, and the average precision 75.94%, respectively.
This paper proposes an intestine segmentation method on CT volume based on a multi-class prediction of intestinal content materials (ICMs). The mechanical intestinal obstruction and the ileus (non-mechanical intestinal obstruction) are diseases which disrupt the movement of ICMs. Although clinicians find the obstruction point that movement of intestinal contents is required on CT volumes, it is difficult for non-expert clinicians to find the obstruction point. We have studied a CADe system which presents obstruction candidates to users by segmentation of the intestines on CT volumes. Generation of incorrect shortcuts in segmentation results was partly reduced in our proposed method by introducing distance maps. However, incorrect shortcuts still remained between the regions filled by air. This paper proposes an improved intestine segmentation method from CT volumes. We introduce a multi-class segmentation of ICMs (air, liquid, and feces). Reduction of incorrect shortcut generation is specifically applied to air regions. Experiments using 110 CT volumes showed that our proposed method reduced incorrect shortcuts. Rates of segmented regions that are analyzed as running through the intestine were 59.6% and 62.4% for the previous and proposed methods, respectively. This result partly implies that our proposed method reduced production of incorrect shortcuts.
This paper proposes an intestinal region reconstruction method from CT volumes of ileus cases. Binarized intestine segmentation results often contain incorrect contacts or loops. We utilize the 3D U-Net to estimate the distance map, which is high only at the centerlines of the intestines, to obtain regions around the centerlines. Watershed algorithm is utilized with local maximums of the distance maps as seeds for obtaining “intestine segments”. Those intestine segments are connected as graphs, for removing incorrect contacts and loops and to extract “intestine paths”, which represent how intestines are running. Experimental results using 19 CT volumes showed that our proposed method properly estimated intestine paths. These results were intuitively visualized for understanding the shape of the intestines and finding obstructions.
This paper presents a visualization method of intestine (the small and large intestine) regions and their stenosed parts caused by ileus from CT volumes. Since it is difficult for non-expert clinicians to find stenosed parts, the intestine and its stenosed parts should be visualized intuitively. Furthermore, the intestine regions of ileus cases are quite hard to be segmented. The proposed method segments intestine regions by 3D FCN (3D U-Net). Intestine regions are quite difficult to be segmented in ileus cases since the inside the intestine is filled with liquids. These liquids have similar intensities with intestinal wall on 3D CT volumes. We segment the intestine regions by using 3D U-Net trained by a weak annotation approach. Weak-annotation makes possible to train the 3D U-Net with small manually-traced label images of the intestine. This avoids us to prepare many annotation labels of the intestine that has long and winding shape. Each intestine segment is volume-rendered and colored based on the distance from its endpoint in volume rendering. Stenosed parts (disjoint points of an intestine segment) can be easily identified on such visualization. In the experiments, we showed that stenosed parts were intuitively visualized as endpoints of segmented regions, which are colored by red or blue.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.