KEYWORDS: Photons, Blood, Liver, Tissue optics, Signal to noise ratio, Tissues, Monte Carlo methods, Near infrared spectroscopy, Computer simulations, Picosecond phenomena
Time-domain near-infrared spectroscopy (TD-NIRs) and Time-Domain Diffuse Correlation Spectroscopy (TD-DCS) are emerging imaging techniques that use a near-infrared, long coherence, pulsed laser to characterize oxygenation levels and blood flow. TD-DCS is a promising tool for bedside monitoring of brain activity due to its high time-resolution and portability. One potential new application area for TD-DCS is for detecting non-compressible torso hemorrhages (NCTH). NCTH is a serious traumatic injury that requires surgical intervention and is a leading cause of death in the military due to the lack of a rapid and portable imaging system sensitive enough to detect injury. Applying long wavelengths (1064 nm and 1120 nm) and time gating, TD-DCS can penetrate the superficial tissue layers and potentially detect bleeding deep within an organ. One limitation of current time-gating system is its reliance on full knowledge of the target tissue layers and properties in order to apply gating effectively. An automatic gating scheme that can adjust the time gate to quickly recalibrate itself to different imaging conditions, such as a different body area, can eliminate this limitation. Here, we use modeling and Monte Carlo simulations to search for characteristics in return signal profiles, specifically the time-of-flight and intensity profiles, as first step toward an automatic time-gating algorithm. We detail the simulation setups, parameter sweeps, and preliminary results in this report. These results show promise for TD-DCS as a tool for rapid and continuous monitoring of injuries in the field.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.