The COVID-19 pandemic caused by the SARS-CoV-2 virus has brought global healthcare systems to their knees. The spike protein on the surface of the virus is a critical component for viral entry into human cells and therefore is a prime target for diagnosis and therapeutics. In recent years, the integration of photonic technology with biosensors has emerged as a promising approach due to its high sensitivity, specificity, and real-time detection capabilities. Optical fibres are one of the most versatile platforms for photonic technology-based biosensors, owing to their small size, low cost, and compatibility with various transduction methods. In this work, we present photonic technology based on optical fibres for the detection of the spike protein present in the SARS-CoV-2 virus. The proposed method involves the use of ad hoc synthesized peptides that specifically bind to the spike protein. The synthesized peptides are immobilized on the surface of the external face of an asymmetric Fabry-Perot cavity fabricated at the end face of a standard optical fibre, which acts as a biosensor. The presence of the spike protein in the sample causes a change in the refractive index, which is detected as variations in the visibility of the spectrum generated in Fabry-Perot cavity. The experimental results carried out have detected spike protein on buffered solutions with an LOD of 0.3 ng/ml. The proposed method offers several advantages over existing biosensors, including high sensitivity, real-time detection, and ease of integration into existing diagnostic platforms. We believe that the proposed photonic technology-based approach can significantly contribute to the development of biosensors for the early diagnosis of COVID-19 and other diseases.
In this work, we report a new approach for fabricating a high sensitivity lysozyme biosensing. The aforementioned device consists of an optimized Fabry-Perot micro-cavity (FPC) fabricated onto cleaved end of a standard single mode fibre (SMF). The sensitive part of our device is the external face of the FPC, which was ad-hoc functionalized in order to provide high selectivity and high sensitivity. From the experimental test carried out, we have found that our sensor has a sensitivity higher than others reported so far, to the best of our knowledge. In addition, the platform introduced here can operate over a broad wavelength which makes it adaptable to different sensing targets. In addition, our sensor offers several advantages such as repeatability of fabrication, wide operating range and small size and weight, which benefit its sensing applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.