Photothermal therapy (PTT) of cancer and bacterial infections is an emerging field that benefits from the light-matter interactions of targeted nanoparticles. Low concentrations of these nanoparticles are desired for low toxicity and low laser excitation power is desired for minimizing proximal tissue damage. Despite earlier experimental success in the PTT with hybrid nanoparticles, a fundamental understanding of concentration-dependence of the photothermal effect is missing. Hence, a computational/theoretical approach must account for the strength of the experimental photothermal effect. Here, we used electromagnetic FDTD simulations and effective medium theory to accurately estimate the in vitro heating behavior of PAA-SPION nanoparticles in water for 640 nm excitation. These nanoparticles were demonstrated to be highly effective in selective killing of prostate cancer cells under near-infrared irradiation (Biomater. Sci., 10, 3951 (2022)). FDTD Solver and EMT using Stack Solver were used to solve for the nanoparticle concentration dependence of their absorption within 450-1000 nm. Our results might pave the way for low-concentration, low power, targeted and drug-loaded PTT.
In the design of mode-locked lasers, single-walled carbon nanotube saturable absorbers (SWCNT-SAs) have emerged as important alternatives to semiconductor saturable absorber mirrors (SESAMs) due to their favorable optical
characteristics, low cost, and relatively simple fabrication scheme. Therefore, it is of great interest to explore the limits of energy scaling in solid-state lasers mode-locked with SWCNT-SAs. Due to their unique wavelength range for
biomedical applications, a room-temperature Cr4+:forsterite laser operating near 1.3 μm was used in the mode-locking experiments. The laser was end-pumped with a continuous-wave Yb-fiber laser at 1064 nm. Furthermore, a q-preserving multipass-cavity (MPC) was added to the short resonator to lower the pulse repetition rate to 4.51 MHz and to scale up the output pulse energy at low average power. The SWCNT-SA was fabricated with SWCNTs grown by the highpressure CO conversion (HiPCO) technique. With dispersion compensation optics, the net group delay dispersion of the resonator was estimated to be around -4440 fs2. When mode-locked with the SWCNT-SA, the resonator produced 10-nJ, 121-fs pulses at 1247 nm with a spectral bandwidth of 16 nm, corresponding to a time-bandwidth product of 0.37. To our knowledge, this represents the highest peak power (84 kW) generated to date from a bulk femtosecond solid-state laser, mode-locked by using a SWCNT-SA. The results also suggest that the peak power achieved in our experiments was limited only by the self-focusing in the Cr4+:forsterite gain medium and further increase in output energy should in principle be possible in other gain media mode-locked with SWCNT-SAs.
Self-Q-switching (SQS) of lasers enable the generation of Q-switched pulses from simple laser cavities without using any additional saturable absorbers or active modulators. Earlier studies have reported SQS in ruby, Nd:YAG, and Cr:LiSAF lasers. However, these systems were mostly flashlamp pumped and required cooling of the crystal and/or misalignment of the laser cavity for the observation of SQS. In this presentation, for the first time to our knowledge, we report SQS operation of a Cr:LiCAF laser. SQS was achieved in an astigmatically compensated x-cavity containing only a Cr:LiCAF crystal that was end-pumped with a 140-mW continuous-wave (cw) diode at 660 nm. During regular cw operation, the laser produced a diffraction-limited beam with 50 mW of output power and had a spectral width of 0.5 nm near 795 nm. SQS operation of the Cr:LiCAF laser could be initiated by fine adjustment of the separation between the curved mirrors of the cavity and was observed at several mirror separations within the stability range of the resonator. During SQS operation, the laser generated saw-tooth-shaped pulses with 20-30 microsecond duration in the 780-800 nm wavelength range, at repetition rates between 10 and 30 kHz. SQS operation was further accompanied with a decrease in the output power to the 30-45 mW range. In this regime, the output beam became multimode and spectral broadening up to 12.5 nm (FWHM) was observed.
Our aim is to explore the welding capabilities of a thulium (Tm:YAP) laser in modulated and continuous-wave (CW) modes of operation. The Tm:YAP laser system developed for this study includes a Tm:YAP laser resonator, diode laser driver, water chiller, modulation controller unit, and acquisition/control software. Full-thickness incisions on Wistar rat skin were welded by the Tm:YAP laser system at 100 mW and 5 s in both modulated and CW modes of operation (34.66 W/cm2). The skin samples were examined during a 21-day healing period by histology and tensile tests. The results were compared with the samples closed by conventional suture technique. For the laser groups, immediate closure at the surface layers of the incisions was observed. Full closures were observed for both modulated and CW modes of operation at day 4. The tensile forces for both modulated and CW modes of operation were found to be significantly higher than the values found by conventional suture technique. The 1980-nm Tm:YAP laser system operating in both modulated and CW modes maximizes the therapeutic effect while minimizing undesired side effects of laser tissue welding. Hence, it is a potentially important alternative tool to the conventional suturing technique.
This paper provides an overview of the experimental work performed in our research group on the synthesis,
spectroscopic investigation, and laser characterization of chromium-doped zinc selenide (Cr2+:ZnSe). By using diffusion
doping, 40 polycrystalline Cr2+:ZnSe samples with ion concentration in the range of 0.8 × 1018 to 66 × 1018ions/cm3
were prepared. From the absorption data, temperature-dependent diffusion coefficient of chromium and losses at the
lasing wavelength were measured. In luminescence measurements, the concentration dependence of the fluorescence
lifetime and fluorescence quantum efficiency was determined. During continuous-wave operation, the optimum
concentration for lasing was determined to be 8.5 × 1018 ions/cm3 at an incident pump power of 2.1 W for 1800-nm
pumping. During gain switched operation, intra-cavity pumping with a 1570-nm optical parametric oscillator resulted in
continuous tuning between 1880 and 3100 nm. By employing dispersion compensation with a MgF2 prism pair, Kerr-lens
mode-locked operation was also demonstrated at 2420 nm, resulting in the generation of 95-fs pulses with an
average output power of 40 mW and spectral bandwidth of 69 nm. The time-bandwidth product of the pulses was further
measured to be 0.335 close to the expected value of 0.315 for sech2 pulses.
Glycerol/water microdroplets take almost spherical shapes when standing on a superhydrophobic surface. Hence they are suitable to function as optical microcavities. Using Rhodamine B doped water microdroplets, large spectral tunability of the whispering gallery modes (WGMs) (>5 nm) was observed. Tunability was achieved by evaporation/condensation in a current controlled mini humidity chamber. Experiments revealed a mechanism stabilizing the volume of these microdroplets with femtoliter resolution. The mechanism relied on the interplay between the condensation rate that was kept constant and the size dependent laser induced heating. The radii of individual water microdroplets (>5 µm) stayed within a few nanometers during long time periods (several minutes). By blocking the laser excitation for 500 msec, the stable volume of individual microdroplets were changed stepwise. Laser emission was also observed from Rhodamine B doped glycerol/water microdroplets using a pulsed, frequency-doubled Nd:YAG laser (=532 nm) as the excitation source. The observed largely tunable WGMs and laser emission can pave way for novel applications in optical communication systems. Besides due to the sensitivity of the WGMs to the size and shape of the microdroplets, the results can find applications in characterizing superhydrophobic surfaces and investigating liquid-solid surfaces.
We describe a technique for the adjustment and control of repetition rates in continuous-wave-pumped, passively Q-switched solid-state lasers. The method uses a movable intracavity lens to modify the mode matching and hence the gain of the laser beam per pass. The technique was applied to a diode-pumped Nd3+:YVO4 laser passively Q-switched with a Cr4+:YAG saturable absorber at 1064 nm. At a fixed pump power of 5.4 W, we were able to continuously adjust the repetition rate between 13.8 and 25 kHz by translating an intracavity converging lens. We also demonstrate that by adjusting the lens position, the repetition rate can be kept at a desired value as the pump power varies. In particular, as the pump power was increased from 3.95 to 5.9 W, the lens position was varied by 0.91 cm to keep the repetition rate constant at 13.8 kHz. Rate-equation formalism was used to investigate the variation of the repetition rate as a function of lens position, and very good agreement was obtained between experiment and theory.
Power performance of a compact, broadly tunable, continuous-wave (cw) Cr2+:ZnSe laser pumped by a thulium fiber laser at 1800 nm was investigated. In the lasing experiments, a Cr2+:ZnSe sample with a small-signal differential absorption coefficient of 11 cm-1 and a fluorescence lifetime of 4.6 μs was used. An astigmatically compensated x-cavity with 15 % output coupler produced as high as 640 mW of output power at 2480 nm with 2.5 W of incident pump power. Resonator losses were investigated using three different methods, and an in-depth analysis of the results was performed. The stimulated emission cross section values determined from laser threshold data and fluorescence measurements were in good agreement with each other. Finally, broad, continuous tuning of the laser was demonstrated between 2240 and 2900 nm by using an intracavity Brewster-cut MgF2 prism and a single set of optics.
We describe a systematic procedure that uses experimental and numerical methods to analyze the continuous-wave power performance of diode end-pumped solid-state lasers. For the general case, saturation, excited-state absorption, and thermal lensing effects are considered and integral equations are derived to study the evolution of the pump and laser beams in the gain medium. As an application of the method, we consider two different diode end-pumped Nd3+:YVO4 lasers operating at 1064 and 1342 nm. Experimental efficiency data were first analyzed to determine the stimulated emission cross sections and the resonator losses. The best-fit laser parameters were then used to calculate the optimum crystal length that maximizes the output power of the laser. The described method should prove useful in the design of a wide range of efficient diode-pumped solid-state lasers.
Tm3+-doped glasses have two emission bands that peak around 1470 nm and 1800 nm in the near infrared, making them potentially important in the development of fiber-optic amplifiers and fiber lasers. The relative strength and the quantum efficiency of these bands depend on the glass composition as well as the active ion concentration. In this study, we have investigated the variation of the luminescence strengths as a function of glass composition and Tm3+ ion concentration in a new type of Tm3+-doped tellurite glass. In the experiments, two sets of samples with the host composition (1-x)TeO2-(x)PbF2 were prepared. In the first set, the active ion concentration was constant (1 mol. % Tm3+) and x=10, 15, 17, 20, 22 and 25 mol. %. The second set had samples with x=10 mol. % and the active ion concentration varied from 0.2 to 1 mol. %. In the experiments, absorption measurements were first made to determine the spontaneous emission probabilities of the 4f-4f transitions of the Tm3+ ions. The calculations were made by using the Judd-Ofelt theory. The samples were then excited with a 785-nm diode to measure the relative emission strengths of the 1470-nm and 1800-nm bands. Our results show that as the Tm3+ ion concentration increases from 0.2 mol. % to 1 mol. %, the ratio of the 1470-nm intensity decreases from 0.98 to 0.18 relative to that of the 1800-nm band.
This work describes the development and characterization of a continuous-wave (cw) room-temperature intracavity-doubled Cr4+:forsterite laser which produces broadly tunable red radiation. Such a source is potentially important in spectroscopy, display technologies, and medical applications. In the experiments, a 2-cm-long Cr4+:forsterite crystal was placed in an astigmatically compensated x-cavity which was end-pumped by a 1064-nm Nd:YAG laser. The crystal which had a small-signal pump absorption of 68 percent was maintained at 20 degrees C. An intracavity Brewster-cut SF10 prism was used to tune the output of the laser. Intracavity frequency doubling was achieved by using a periodically poled lithium niobate (PPLN) crystal which had 8 different poling periods. The PPLN crystal was placed inside the resonator between a curved folding mirror and the curved output coupler. The transmission of the output coupler was 2.6 percent at 1260 nm. The PPLN temperature was maintained at 188 degrees C. By translating the PPLN crystal through sections with different poling periods, second harmonic generation was obtained in the wavelength region between 613 and 655 nm. With an incident pump power of 6.8 W at 1064 nm, the Cr4+:forsterite laser produced 245 mW of cw output power at 1260 nm and intracavity frequency doubling yielded 45 mW at 630 nm.
In this work we have generated widely-tunable continuous-wave (CW) red light by second-harmonic generation (SHG) of the output of a Cr4+:forsterite laser, tunable from 1.206 to 1.320 micrometer, using quasi-phasematching (QPM) in periodically-poled lithium niobate (PPLN). For a given grating period in the PPLN, a combination of Cr4+:forsterite pump wavelength tuning and PPLN temperature tuning up to 200 degrees Celsius provided continuous SHG tuning over a wavelength range of approximately 14 nm in the red. By translating the PPLN crystal to other periods, we have demonstrated SHG over the entire tuning range of the pump laser, yielding tunable CW output from 603 to 660 nm with maximum output powers of approximately 5 mW for a typical Cr4+:forsterite pump power of 500 mW.
Cr4+ doped in forsterite and YAG form broadly tunable lasers in the 1.2-1.6 micrometers region. These lasers can operation cw with output powers up to 2W, they re both pumped with the 1.06 micrometers output of a Nd:YAG laser, and they can both be modelocked to produce femtosecond pulses. We report on the latest results from these lasers, including self-modelocked operation of the Cr:YAG laser at 1.52 micrometers , with 120 femtosecond pulses, and with 480 mW output power. Both lasers are significantly affected by temperature: output power decreases with increasing temperature. Attempts to find a new host lattice for Cr4+ which does not have the deleterious temperature sensitivity of forsterite of YAG have not led to any breakthroughs.
Regeneratively-initiated, self-sustained, continuous-wave mode-locked operation of a chromium-doped forsterite laser operated at 3.5 degree(s)C is described. Without compensating for the positive group velocity dispersion of the cavity, regenerative, acousto-optic modulation produced pulses of between 41 and 6.5 psec (FWHM) at 1.23 micrometers with average output powers of between 280 and 380 mW, respectively. By employing intracavity negative group velocity dispersion compensation, nearly transform-limited femtosecond pulses of 48 fsec (FWHM) duration were generated with average TEM00 output powers of 380 mW at 1.23 micrometers . These represent the shortest and highest peak power pulses directly generated from this laser system to date.
The relaxation time of hot carriers in bulk Ga47In053As has been measured as a function
of excitation energy near and above the conduction band minimum, and as a function of
carrier density. The carrier relaxation rate increases dramatically with excess energy, due to
the additional energy decay provided by the LO phonons. As a function of carrier density,
the scattering rate is maximum at densities below 1018 cm3, but decreases for higher
carrier concentrations, falling roughly by half at 1019 cm3.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.