Fluorescence enhanced optical tomography uses modulated NIR light and an exogenous fluorescent contrast agent in order to assess its spatial distribution deep within tissues. However, a spatial distribution of endogenous optical properties of absorption and scattering coefficients arises due to normal, structured anatomical background which can be expected to vary from patient to patient. This structured background can be a source of randomness (or “noise”) in the task of detecting a fluorescent target. In addition, there may be non-uniform distribution of exogenous fluorescent agent. Our objective is to develop the tools for OAIQ in order to assess the performance of image reconstruction algorithms in the presence of anatomical backgrounds owing to both endogenous and exogenous optical properties. We consider the lumpy-object model developed by Rolland and Barrett to simulate the normal background anatomy as a representation of the non-specific distribution of the fluorescent agent as well as the natural heterogeneity of the endogenous tissue optical properties. Reconstructed images show the insensitivity to endogenous optical property lumps in fluorescence enhanced optical imaging. The reconstructed images are more sensitive to uneven distribution of exogenous fluorophore in normal tissues, but can nonetheless be achieved.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.