The current paper introduces the Twin ANthropogenic Greenhouse Gas Observers (TANGO) instruments and mission. The purpose of TANGO is monitoring and quantifying greenhouse gas emissions, with a focus on characterizing emission sources down to the level of individual facilities. The TANGO mission was developed for the ESA-Scout program by a consortium consisting of ISISpace, TNO, SRON and KNMI. It consists of two agile CubeSat satellites that fly in tandem, with less than 1 minute between observations of the same target, each satellite equipped with a spectrometer of the TNO Spectrolite family of instruments that observes a different part of the spectrum. TANGO-Carbon measures emission of CH4 and CO2 in the SWIR1 spectral band. TANGO-Nitro measures emission of NO2 in the visible spectral range. The Nitro instrument has a multifunctional role, using the NO2 measurements to improve the detection of (anthropogenic) CO2 plumes, deriving historic CO2 emission trends based on available global NO2 observations, and quantifying the possible CO2 contribution in mixed CH4-CO2 sources. Each TANGO instrument fits in an 8U volume (on a 16U platform) and are all-aluminium, reflective pushbroom spectrometers covering a 30-km swath from a 500-km altitude, with a ground sampling distance of 300 m × 300 m. In this paper we will present the mission, the shared instrument concept, as well as the design and performance of both Carbon and Nitro instruments.
Additional presentation content can be accessed on the supplemental content page.
Bryan T. de Goeij, Dick de Bruijn, Frits van der Knaap, Hans Bol, Wim Gielesen, Andrew Bell, Alan Matthews, Mark Skipper, Ben Hallett, Maximilian Sauer, Klaus-Werner Kruse, Cornelius Haas, Kotska Wallace, Arnaud Heliere
The European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) are co-operating to develop the EarthCARE satellite mission with the fundamental objective of improving the understanding of the processes involving clouds, aerosols and radiation in the Earth’s atmosphere.
A Cloud Profiling Radar (CPR), an Atmospheric LIDAR (ATLID), a Broadband Radiometer (BBR) and a Multi- Spectral Imager (MSI) constitute the payload complement of the EarthCARE satellite. The four instruments will provide synergistic data on cloud and aerosol vertical structure, horizontal cloud structure and radiant flux from sub-satellite cells. By acquiring images of the clouds and aerosol distribution, the MSI instrument will provide important contextual information in support of the radar and LIDAR data processing.
The MSI instrument itself consists of two camera units, the Thermal Infrared (TIR) camera and the Visible, Near- Infrared and Shortwave Infrared (VNS) camera, that are readout through a shared Front-End-Electronics (FEE) unit, all controlled by the Instrument Control unit (ICU).
The subject of this paper is the characterisation and performance verification results of the TNO designed and built Proto Flight Model (PFM) VNS camera in conjunction with the SSTL designed and built PFM FEE unit. This paper presents an overview of the characterisation and performance verification philosophy, followed by a more detailed presentation of several important measurements sets highlighted below.
Optical quality measurements (Modulation Transfer Function)
In order to measure the MTF of the VNS camera for several spatial frequencies simultaneously, a dedicated laboratory setup was built that provided the camera with block illumination patterns. Using Fourier analysis these optical block functions could be separated into their higher order components, resulting in acquisition of the MTF performance for several spatial frequencies concurrently.
Spectral Response measurements
For the VNS camera the spectral response was measured from 300nm up to 2400nm over the entire instrument swath of 360pixels. In order to perform this in an efficient manner a lock-in amplification setup was devised that included a “high” power pulsed tunable laser source, integrating spheres and monitoring detector.
In order to control pulse to pulse variations of the laser source and have a correct background correction, the 1kHz pulse frequency of the laser was further modulated by a several Hz chopper, resulting in spectral measurements with ~1% accuracy.
Straylight measurements
The straylight requirements for the VNS camera were specified as the maximum allowable amount of signal in an infinite dark area when illuminating the VNS camera with semi- infinite light source in an adjacent area. A dedicated tool was developed to simulate these (semi) infinite areas.
Radiometric characterization
For the VNS camera the required absolute radiometric accuracy was quite relaxed, 10% (5% goal). However, the interchannel radiometric accuracy between the VNS channels is required to be better than 1%. This last requirement could not be achieved by “standard” radiometric calibration methods and a calibration method was developed using the VNS camera itself in collaboration with an integrating sphere that was used in radiance and irradiance modes.After finalisation of the performance testing and calibration measurements the VNS camera was delivered to SSTL mid 2017 for further integration on the MSI Optical Bench Module and alignment with the TIR camera and other MSI subsystems by SSTL.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.