We describe a CMOS photonic integrated circuit for fully on-chip generation of frequency-bin and polarization-
entangled photon pairs. The Sagnac-inspired design uses an on-chip polarization splitter-rotator to bidirectionally
pump a microring resonator and generate entangled photon pairs through spontaneous four-wave mixing in
frequency bins spaced 38.4 GHz apart with < 6 GHz linewidth. By recombining the counterpropagating outputs
into orthogonal polarization modes with a second polarization splitter-rotator, the source outputs polarization
Bell states with high fidelity (95% on average for ≥ 10 bins away from the pump) across the C- and L-bands
(> 9 THz)—a bandwidth currently limited only by the passband of our wavelength-selective switch. Our source
has applications in flex-grid entanglement distribution, where adjacent frequency bins may be combined to
improve the flux and coincidences received by an end-user. Additionally, the source can support a high density
of information per photon pair as a hyperentangled resource in the polarization and frequency-bin degrees of
freedom.
Frequency-bin encoding is massively parallelizable and robust for optical fiber transmission. When coupled with an additional degree of freedom (DoF), the expansion of the Hilbert space allows for deterministic controlled operations between two DoFs within a single photon. Such capabilities, when combined with photonic hyperentanglement, are of great value for quantum communication protocols, including dense coding and single-copy entanglement distillation. In this talk, we present an all-fiber-coupled, ultrabroadband polarization–frequency hyperentangled source and conduct comprehensive quantum state tomography across multiple dense wavelength division multiplexing channels spanning the optical C+L-band (1530–1625 nm). In addition, we design and implement a high-fidelity controlled-NOT (cnot) operation between polarization and frequency DoFs by exploiting electro-optic phase modulation within a fiber Sagnac loop. Collectively, our hyperentangled source and two-qubit gate should unlock new opportunities for harnessing polarization–frequency resources in established telecommunication fiber networks for future quantum applications.
Quantum networking holds tremendous promise in transforming computation and communication. Entangled-photon sources are critical for quantum repeaters and networking, while photonic integrated circuits are vital for miniaturization and scalability. In this talk, we focus on generating and manipulating frequency-bin entangled states within integrated platforms. We encode quantum information as a coherent superposition of multiple optical frequencies; this approach is favorable due to its amenability to high-dimensional entanglement and compatibility with fiber transmission. We successfully generate and measure the density matrix of biphoton frequency combs from integrated silicon nitride microrings, fully reconstructing the state in an 8 × 8 two-qudit Hilbert space, the highest so far for frequency bins. Moreover, we employ Vernier electro-optic phase modulation methods to perform time-resolved measurements of biphoton correlation functions. Currently, we are exploring bidirectional pumping of microrings to generate indistinguishable entangled pairs in both directions, aiming to demonstrate key networking operations such as entanglement swapping and Greenberger–Horne–Zeilinger state generation in the frequency domain.
Broadband time-energy entangled photons feature strong temporal correlations with potential for precision delay metrology, but previous work has leveraged only time-of-flight information ultimately limited by the detection jitter and resolution of the time-tagging electronics. Firstly, our work pushes the entanglement-based nonlocal delay metrology from the conventional time-of-flight measurement to a new direction—two-photon interferometry with subpicosecond sensitivity independent of detection resolution. Next, we show the selective sensitivity of frequency-bin encoded Bell states to the sum and difference of biphoton-delays by using a novel reconfigurable setup capable of switching between the Bell states by successively employing single and dual spectral-line pumps.
Entanglement and encoding in discrete frequency bins – essentially a quantum analogue of wavelength-division multiplexing – represents a relatively new degree of freedom for quantum information with photons. In this talk I discuss biphoton frequency combs, generated either by spontaneous four-wave mixing (SFWM) from on-chip microring resonators or by spectral filtering of spontaneous parametric down conversion (SPDC) in second order nonlinear crystals. Potential advantages include generation of high dimensional units of quantum information (qudits), which can carry multiple qubits per photon, robust transmission over fiber, and frequency parallelism and routing. Since the initial experiments 2-3 years ago, frequency bin quantum photonics has been advancing rapidly [1, 2]. In this talk I will give special attention to high dimensional entanglement. One of the interesting possibilities is to perform mixing of multiple frequency bins in a single operation, going well beyond nearest neighbor “interactions.” In this vein I will comment on two recent experiments in our lab, each involving more than a dozen frequency bins. One experiment focuses on quantum walks of frequency entangled photon pairs, in which the input state can be coherently steered toward either correlated or anticorrelated quantum walk behavior [3]. In the second case, we show that high-dimensional frequency bin entanglement enables measurement of signal-idler delay at the few picosecond level, ~30× faster than the single photon detectors employed [4].
Entanglement and encoding in discrete frequency bins – essentially a quantum analogue of wavelength-division multiplexing – represents a relatively new degree of freedom for quantum information with photons. In this talk I discuss biphoton frequency combs, generated either by spontaneous four-wave mixing (SFWM) from on-chip microring resonators or by spectral filtering of spontaneous parametric down conversion (SPDC) in second order nonlinear crystals. Potential advantages include generation of high dimensional units of quantum information (qudits), which can carry multiple qubits per photon, robust transmission over fiber, frequency parallelism and routing, and compatibility with on-chip implementations, as well as hyperentanglement with other photonic degrees, e.g., time-frequency hyperentanglement. Since the initial experiments less than two years ago, frequency bin quantum photonics has been advancing rapidly [1-8]. In this talk I will discuss a method using pulse shapers and phase modulators in order to mix different frequencies and perform two photon interference experiments for characterization of the frequency-bin entanglement. Similar components (pulse shapers and phase modulators) may be used to manipulate the frequency-encoded quantum states; this will be described in another talk by our collaborators at Oak Ridge National Labs. I will also discuss the use of time bins and frequency bins as independent degrees of freedom in a quantum encoding fashion to realize what we believe to be the first deterministic two qudit gates. Finally, I comment briefly on potential applications and on prospects for realization of integrated frequency bin quantum photonics.
Nonlinear wave mixing in optical microresonators offers a route to chip-level optical frequency combs with many promising applications. The properties of the combs generated depend crucially on the interaction between nonlinearity and dispersion. This paper will discuss our research on Kerr comb generation in silicon nitride chip-scale microresonators, with an emphasis on distinct features observed in the normal and anomalous dispersion regimes. The topics covered include comb initiation, comb coherence and mode-locking, power conversion efficiency, and second-harmonic involved comb generation.
High resolution spectroscopy is the foundation for many of the most challenging and productive
of all astronomical observations. A highly precise, repeatable and stable wavelength calibration
is especially essential for long term RV observations. The two wavelength references
in wide use for visible wavelengths, iodine absorption cells and thorium/argon lamps, each
have fundamental limitations which restrict their ultimate utility.
We are exploring the possibility of adapting emerging laser frequency comb technology in development
at the National Institute of Standards and Technology in Boulder, Colorado, to the
needs of high resolution, high stability astronomical spectroscopy. This technology has the
potential to extend the two current wavelength standards both in terms of spectral coverage and
in terms of long term precision, ultimately enabling better than 10 cm/s astronomical radial
velocity determination.
Femtosecond pulse shaping for generating nearly arbitrarily shaped ultrafast optical pulses is now a well-established technology and has been widely adopted for applications ranging from high-speed communications to coherent laser control of chemical reactions. Arbitrary waveform generation (AWG) capabilities for millimeter-wave, microwave and THz electromagnetic signals, however, are quite limited. Commercial radio frequency AWG instrumentation is currently limited to ~2 GHz bandwidth. In this talk we review work at Purdue in which shaped optical pulses are used to drive an optical-to-electrical (O/E) converter. This leverages our femtosecond optical AWG technology to achieve cycle-by-cycle synthesis of arbitrary voltage waveforms in the range between a few GHz and ~1 THz. Such capabilities could open new possibilities for applications in areas such as wireless communications, electronic countermeasures, sensing, and pulsed radar.
Recently our work has focused on the range from GHz to tens of GHz. A particular focus has been on the generation of signals appropriate for ultrawideband (UWB) wireless communications using "monocycle" pulses with very large fractional bandwidths. UWB technology provides high immunity to multipath interference, low probability of intercept, and high spatial resolution (for position location). Potential defense applications include tactical sensor networks and RFIF tags for inventory control. Our experiments demonstrate the ability to generate programmable monocycles with spectra that can be tailored to match emission limits and with durations and bandwidths that improve on the mainstream electronic technology. Additional potential applications include predistortion of transmit waveforms in order to precompensate distortions associated with broadband antennas and waveform optimization for enhanced target discrimination in pulsed radar.
Speckle intensity correlations are used to study polarized coherent
light propagating through scattering media. In particular, using measured speckle patterns as a function of frequency, second and third order intensity correlations with frequency are formed and then employed to determine the co-polarized and cross-polarized temporal impulse responses. The polarized impulse response provides information on the scattering medium that could aid in characterization. Determination of the temporal response from intensity only data is especially convenient in the optical domain.
A new micromachining technique using user-defined trains of amplified femtosecond laser pulses is described. In this method, a 2-fold Michelson interferometer is used to split each output pulse of an amplified femtosecond laser system operating at 1 kHz into four different pulses at desired seperations ranging from 1 ps to 1 ns. These quadruple pulses are then focused on metal, semiconductor and dielectric samples and the material removal characteristics are noted. The experimental results show that there is a distinct effect of the pulse separation on the machining characteristics. It is observed that, in some cases, use of the quadruple pulses separated by 1 ns provides better material removal than the original pulses separated by 1 ms. The femtosecond laser-material interaction is also modeled for the case of metal samples using the two-temperature model. Numerical simulations that were carried out show that irradiation with quadruple pulses lead to a reduction in the predicted melting threshold fluence, which agrees with the experimental observation.
We demonstrate a convenient technique for determining the temporal response and scattering parameters of a diffusive medium using laser speckle pattern frequency correlations. Experimental results using an external-cavity tunable laser diode are presented. This approach can be extended to provide data for image reconstruction based on a diffusion model.
Large-aperture biased photoconductive emitters which can generate high-power narrow-band terahertz (THz) radiation are developed. These emitters avoid saturation at high fluence excitation and achieve enhanced peak power spectral density by employing a thick layer of short lifetime low- temperature-grown GaAs (LT-GaAs) photoconductor and multiple-pulse excitation. THz waveforms are calculated from the saturation theory of large-aperture photoconductors, and a comparison is made between the theory and the measurement. A direct comparison of the multiple-phase saturation properties of terahertz emission from semi-insulating GaAs and LT-GaAs emitters with different carrier lifetimes reveals a strong dependence of the multiple pulse saturation properties of terahertz emission on the carrier lifetime. In particular, the data demonstrate that saturation is avoided only when the interpulse spacing is longer than the carrier lifetime.
We discuss Fourier optics methods for ultrafast optical pulse shaping, waveform synthesis, and signal processing, which are achieved by spatial manipulation of the dispersed optical frequency spectra of femtosecond pulses.
We present the bit-error-rate (BER) analysis of an ultrashort light pulse code-division multiple access (CDMA) communication system, which employs a practical nonlinear detector. The system considered here assumes a CDMA network, in which M user stations are connected via a star coupler and a common fiber channel. The transmitter at each station consists of a mode locked femtosecond fiber laser at 1550 nm whose ultrashort pulses are encoded by a spectral phase encoder and uses an on- off-keying scheme. The receiver consists of a decoder, a nonlinear detector, and an integrate and dump data circuit. In this work, we develop an efficient Monte Carlo simulation using importance sampling scheme to estimate the error probabilities of the system in addition to the analytical technique. The simulation results are found to be in good agreement with the analytical results.
Considerable interest has arisen recently in the prospect of using specially crafted ultrashort laser pulses for coherent control of atomic and molecular systems. The aim in these studies is to utilize control over femtosecond optical waveforms as a tool to manipulate constructive and destructive interferences associated with quantum mechanical wave packets motions, which could ultimately lead to optical manipulation of chemical reactions and in the shorter term should make possible preparation of well-defined quantum mechancial states for precise spectroscopic determination of molecular Hamiltonians. At Purdue we have initiated a project aimed at applying these coherent control concepts in a new setting--namely, in specially designed layered semiconductor materials. A key motivation for using layered semiconductors as a coherent control laboratory is the ability to engineer the Hamiltonian through the epitaxial growth process, so that one may have better knowledge of and control over the Hamiltonian than one has in studies of complex molecules. Here we review the femtosecond pulse shaping technology crucial for our coherent control studies and discuss our plans and progress in applying pulse shaping to manipulate coherent charge oscillations in double coupled quantum wells and superlattices in the GaAs/GaAlAs material system.
We present a comprehensive report of time-resolved reflectivity and transmission measurements of the superconducting system PrxY1-xBa2Cu3O7-(delta ). For a fixed photon energy (1.98 eV), varying the Pr content permits optical probing of energy states both above and below the Fermi level where a superconducting gap is expected to occur. We find qualitatively different behavior in the sign, magnitude, and temporal responses as a function of Pr fraction. Our results indicate that a simple two-fluid model interpretation cannot account for the observed response and that the intrinsic band structure of PrxY1-xBa2Cu3O7-(delta ) plays a significant role in the dynamics of these systems.
Timed sequences of femtosecond pulses produced by pulse-shaping techniques
have been used to achieve improved optical control over molecular motion in crystalline
solids. Selected lattice vibrational modes in an organic molecular crystal have been driven
repetitively by appropriately timed pulse sequences in a manner analogous to that in which
a child on a swing is pushed repetitively with timed mechanical forces. Repetitive driving
with a pulse sequence results in larger lattice vibrational amplitudes and improved modeselectivity
compared to driving with a single pulse. Numerous applications of pulseshaping
techniques in femtosecond spectroscopy are anticipated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.