Computed tomography (CT) using photon-counting detectors (PCD) offers dose-efficient ultra-high-resolution imaging, high iodine contrast-to-noise ratio, multi-energy and material decomposition capabilities. We have previously demonstrated the potential benefits of PCD-CT using phantoms, cadavers, and human studies on a prototype PCD-CT system. This system, however, had several limitations in terms of scan field-of-view (FOV) and longitudinal coverage. Recently, a full FOV (50 cm) PCD-CT system with wider longitudinal coverage and higher spatial resolution (0.15 mm detector pixels) has been installed in our lab capable of human scanning at clinical dose and dose rate. In this work, we share our initial experience of the new PCD-CT system and compare its performance with a state-of-the-art 3rd generation dual-source CT scanner. Basic image quality was assessed using an ACR CT accreditation phantom, high-resolution performance using an anthropomorphic head phantom, and multi-energy and material decomposition performance using a multi-energy CT phantom containing various concentrations of iodine and hydroxyapatite. Finally, we demonstrate the feasibility of high-resolution, full FOV PCD-CT imaging for improved delineation of anatomical and pathological features in a patient with pulmonary nodules.
In addition to the standard-resolution (SR) acquisition mode, a high-resolution (HR) mode is available on a research photon-counting-detector (PCD) whole-body CT system. In the HR mode each detector consists of a 2x2 array of 0.225 mm x 0.225 mm subpixel elements. This is in contrast to the SR mode that consists of a 4x4 array of the same subelements, and results in 0.25 mm isotropic resolution at iso-center for the HR mode. In this study, we quantified ex vivo the capabilities of the HR mode to characterize renal stones in terms of morphology and mineral composition. Forty pure stones - 10 uric acid (UA), 10 cystine (CYS), 10 calcium oxalate monohydrate (COM) and 10 apatite (APA) - and 14 mixed stones were placed in a 20 cm water phantom and scanned in HR mode, at radiation dose matched to that of routine dual-energy stone exams. Data from micro CT provided a reference for the quantification of morphology and mineral composition of the mixed stones. The area under the ROC curve was 1.0 for discriminating UA from CYS, 0.89 for CYS vs COM and 0.84 for COM vs APA. The root mean square error (RMSE) of the percent UA in mixed stones was 11.0% with a medium-sharp kernel and 15.6% with the sharpest kernel. The HR showed qualitatively accurate characterization of stone morphology relative to micro CT.
Two ultra-high-resolution (UHR) imaging modes, each with two energy thresholds, were implemented on a research, whole-body photon-counting-detector (PCD) CT scanner, referred to as sharp and UHR, respectively. The UHR mode has a pixel size of 0.25 mm at iso-center for both energy thresholds, with a collimation of 32 × 0.25 mm. The sharp mode has a 0.25 mm pixel for the low-energy threshold and 0.5 mm for the high-energy threshold, with a collimation of 48 × 0.25 mm. Kidney stones with mixed mineral composition and lung nodules with different shapes were scanned using both modes, and with the standard imaging mode, referred to as macro mode (0.5 mm pixel and 32 × 0.5 mm collimation). Evaluation and comparison of the three modes focused on the ability to accurately delineate anatomic structures using the high-spatial resolution capability and the ability to quantify stone composition using the multi-energy capability. The low-energy threshold images of the sharp and UHR modes showed better shape and texture information due to the achieved higher spatial resolution, although noise was also higher. No noticeable benefit was shown in multi-energy analysis using UHR compared to standard resolution (macro mode) when standard doses were used. This was due to excessive noise in the higher resolution images. However, UHR scans at higher dose showed improvement in multi-energy analysis over macro mode with regular dose. To fully take advantage of the higher spatial resolution in multi-energy analysis, either increased radiation dose, or application of noise reduction techniques, is needed.
This study evaluates the capabilities of a whole-body photon counting CT system to differentiate between four
common kidney stone materials, namely uric acid (UA), calcium oxalate monohydrate (COM), cystine (CYS),
and apatite (APA) ex vivo. Two different x-ray spectra (120 kV and 140 kV) were applied and two acquisition
modes were investigated. The macro-mode generates two energy threshold based image-volumes and two energy
bin based image-volumes. In the chesspattern-mode four energy thresholds are applied. A virtual low energy
image, as well as a virtual high energy image are derived from initial threshold-based images, while considering
their statistically correlated nature. The energy bin based images of the macro-mode, as well as the virtual
low and high energy image of the chesspattern-mode serve as input for our dual energy evaluation. The dual
energy ratio of the individually segmented kidney stones were utilized to quantify the discriminability of the
different materials. The dual energy ratios of the two acquisition modes showed high correlation for both applied
spectra. Wilcoxon-rank sum tests and the evaluation of the area under the receiver operating characteristics
curves suggest that the UA kidney stones are best differentiable from all other materials (AUC = 1.0), followed
by CYS (AUC ≈ 0.9 compared against COM and APA). COM and APA, however, are hardly distinguishable
(AUC between 0.63 and 0.76). The results hold true for the measurements of both spectra and both acquisition
modes.
An ultrahigh-resolution (UHR) data collection mode was enabled on a whole-body, research photon counting detector (PCD) computed tomography system. In this mode, 64 rows of 0.45 mm×0.45 mm detector pixels were used, which corresponded to a pixel size of 0.25 mm×0.25 mm at the isocenter. Spatial resolution and image noise were quantitatively assessed for the UHR PCD scan mode, as well as for a commercially available UHR scan mode that uses an energy-integrating detector (EID) and a set of comb filters to decrease the effective detector size. Images of an anthropomorphic lung phantom, cadaveric swine lung, swine heart specimen, and cadaveric human temporal bone were qualitatively assessed. Nearly equivalent spatial resolution was demonstrated by the modulation transfer function measurements: 15.3 and 20.3 lp/cm spatial frequencies were achieved at 10% and 2% modulation, respectively, for the PCD system and 14.2 and 18.6 lp/cm for the EID system. Noise was 29% lower in the PCD UHR images compared to the EID UHR images, representing a potential dose savings of 50% for equivalent image noise. PCD UHR images from the anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures.
Photon counting detector (PCD)-based computed tomography (CT) is an emerging imaging technique. Compared to conventional energy integrating detector (EID)-based CT, PCD-CT is able to exclude electronic noise that may severely impair image quality at low photon counts. This work focused on comparing the noise performance at low doses between the PCD and EID subsystems of a whole-body research PCD-CT scanner, both qualitatively and quantitatively. An anthropomorphic thorax phantom was scanned, and images of the shoulder portion were reconstructed. The images were visually and quantitatively compared between the two subsystems in terms of streak artifacts, an indicator of the impact of electronic noise. Furthermore, a torso-shaped water phantom was scanned using a range of tube currents. The product of the noise and the square root of the tube current was calculated, normalized, and compared between the EID and PCD subsystems. Visual assessment of the thorax phantom showed that electronic noise had a noticeably stronger degrading impact in the EID images than in the PCD images. The quantitative results indicated that in low-dose situations, electronic noise had a noticeable impact (up to a 5.8% increase in magnitude relative to quantum noise) on the EID images, but negligible impact on the PCD images.
Photon-counting CT (PCCT) is an emerging technique that may bring new possibilities to clinical practice. Compared to
conventional CT, PCCT is able to exclude electronic noise that may severely impair image quality at low photon counts.
This work focused on assessing the low-dose performance of a whole-body research PCCT scanner consisting of two
subsystems, one equipped with an energy-integrating detector, and the other with a photon-counting detector. Evaluation
of the low-dose performance of the research PCCT scanner was achieved by comparing the noise performance of the
two subsystems, with an emphasis on examining the impact of electronic noise on image quality in low-dose situations.
A high-resolution (HR) data collection mode has been introduced to a whole-body, research photon-counting-detector
CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm x 0.45 mm detector pixels were used, which
corresponded to a pixel size of 0.25 mm x 0.25 mm at the iso-center. Spatial resolution of this HR mode was quantified
by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine
lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed
by two experienced radiologists. High spatial resolution of the HR mode was evidenced by the MTF measurement, with
15 lp/cm and 20 lp/cm at 10% and 2% modulation. Images from anthropomorphic phantom and cadaveric specimens
showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary
arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD
system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular
imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also
benefit from this high resolution mode.
The energy-selectivity of photon counting detectors provides contrast enhancement and enables new material-identification techniques for clinical Computed Tomography (CT). Patient dose considerations and the resulting requirement of efficient X-ray detection suggest the use of CdTe or CdZnTe as detector material. The finite signal pulse duration of several nanoseconds present in those detectors requires strong reduction of the pixel size to achieve feasible count rates in the high-flux regime of modern CT scanners. Residual pulse pile-up effects in scans with high X-ray fluxes still can limit two key properties of the counting detector, namely count-rate linearity and spectral linearity. We have used our research prototype scanner with CdTe-based counting detector and 225μm small pixels to investigate these effects in CT imaging scenarios at elevated X-ray tube currents. We present measurements of CT images and provide a detailed analysis of contrast stability, image noise and multi-energy performance achieved with different phantom sizes at various X-ray tube settings.
We have investigated the multi-energy performance of our most recent prototype CT scanner with CdTe-based
counting detector. With its small pixel pitch of 225 μm this device is prepared for the high X-ray fluxes occurring
in clinical CT. Each of these pixels is equipped with two adjustable counters. The ASIC architecture of the
detector allows configuration of the counter thresholds in chess patterns, enabling data acquisition in up to four
energy bins. We have studied the material separation capability of counting CT with respect to potential clinical
applications. Therefore we have analyzed contrast and noise properties in material decomposed CT images using
up to four base materials. We have studied contrast agents containing iodine, gadolinium, or gold, and the
body-like materials calcium, fat, and water. We describe the mathematical framework used in this work and
demonstrate the general multi-energy capability of counting CT with simulations and experimental data from
our prototype scanner. To prove the clinical relevance of our studies we compare the results to those obtained
with well-established dual-kVp techniques recorded at same patient dose and with identical image sharpness.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.