The strong interest in solar energy motivates the scientific community to improve the energy conversion efficiency of solar panels (SPs). Indeed, the implementation of plasmonic nanoparticles (NPs) in SPs can enhance the absorption coefficient due to the well-known localized surface plasmons resonances (LSPR) and then increase SP efficiency. However, the silicon-based SPs do not absorb the solar radiation above 1000 nm wavelengths. One of the solutions is to use an enhancement of up-conversion photoluminescence (PL) coupled with a plasmonic NP [1]. Shortly, a fluorophore absorbing several photons simultaneously in the IR exhibits emission in the range of the silicon absorption band and this process can be enhanced by plasmonics.
Recently, it has been shown that 170 nm-diameter single gold nanocylinders (GNCs) have multi-resonant characteristics [2]. In this work, we report on the simultaneous excitation and emission enhancements of quantum dots up-conversion PL (two-photon photoluminescence (TPPL)) assisted by dipolar and quadrupolar modes of a single GNC.
Indeed, the use of radial and linear polarizations allows us to obtain singly or doubly enhanced TPPL respectively. We show that double resonantly enhanced up-conversion can be higher by 4-7 times than single resonant up-conversion.
References
[1] J.G. Smith, J.A. Faucheaux, P. K. Jain, "Plasmon resonances for solar energy harvesting: A mechanistic outlook," Nano Today, 10, 67-80 (2015).
[2] A. Movsesyan, A.-L. Baudrion, P.-M. Adam, "Revealing the hidden modes of a gold nanocylinder, " Journal of Phys. Chem. C, 122(41), 23651-23658 (2018).
KEYWORDS: Nanoparticles, Polymers, Near field optics, Metals, Near field, Energy transfer, Molecules, Nanostructures, Atomic force microscopy, Photopolymerization
Incorporating resonant optical properties of metal nanostructures into nanoscale applications such as ultrahigh density storage devices, nanoelectronics, and nanophotonics has gained considerable interest within the last years. Recent advances in hybrid and molecular plasmonics are presented. The approach relies on near-field energy transfer between metal nanoparticles and other molecular material, and is not diffraction-limited. We will see that optical nanosources supported by metal nanoparticles can be used for controlling/triggering photochemical and photo physical processes involving photons, charges and motion transfers at the nanoscale. In particular, three examples will be presented and commented: free radical photopolymerization, photo isomerization and nanoscale strong coupling. These examples open new routes including optical near-field photography of ultra confined fields, mode hybridizing in single nanoparticles, molecular optical nanomotors, and new anisotropic nanoemitters.
This letter provides a brief summary on early work and developments on both controlling and studying the optical
properties of resonant metal nanoparticles and reports on all progress achieved since two years. Our approach is based on
controlled nanoscale photopolymerization triggered by local enhanced electromagnetic fields of silver nanoparticles
excited close to their dipolar plasmon resonance. By anisotropic polymerization, symmetry of the refractive index of the
surrounding medium was broken: C1v symmetry turned to C2v symmetry. This approach has overcome all the
difficulties faced by scanning probe methodologies to reproduce the form of the near field of the localized surface
plasmons and provides a new way to quantify its magnitude. Furthermore, this approach leads to the production of
polymer/metal hybrid nano-systems of new optical properties.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.