This will count as one of your downloads.
You will have access to both the presentation and article (if available).
DRS has designed a full HD (1920x1080) readout integrated circuit (ROIC) specifically for cost-effective waferscale infrared (WIRED) detectors on 3 μm pitch, for best theoretical image quality optical system performance. The sensor’s pixels use a capacitive trans-impedance amplifier (CTIA) and a metal-insulator-metal (MIM) integration capacitor, to achieve 22 Ke- well capacity, 0.7 V output swing and 37 e- or 18 e- equivalent readout noise, operating at 60 Hz ripple readout mode or 30 Hz correlated double sampling (CDS) mode, respectively. The fully digital ROIC consumes approximately 0.5 W of power, allowing it to be fielded in battery-powered applications.
CrIS detectors are 850 μm diameter detectors with each FPAA consisting of nine photovoltaic detectors arranged in a 3 x 3 pattern. Molecular beam epitaxy (MBE)-grown Hg1-xCdxTe material are used for the detectors fabricated in a modified Double Layer Planar Heterostructure (DLPH) architecture. Each detector has an accompanying cold preamplifier. SWIR and MWIR FPAAs operate at 98 K and the LWIR FPAA at 81 K, permitting the use of passive radiators to cool the detectors. D* requirements at peak 14.01 μm wavelength are ≥ 5.0E+10 Jones for LWIR, ≥ 7.5E+10 Jones at 8.26 μm for MWIR and ≥ 3.0E+11 Jones at peak 4.64 μm wavelength for SWIR. All FPAAs exceeded the D* requirements. Measured mean values for the nine photodiodes in each of the LWIR, MWIR and SWIR FPAAs are D* = 5.3 x 1010 cm-Hz1/2/W at 14.0 μm, 9.6 x 1010 cm-Hz1/2/W at 8.0 μm and 3.4 x 1011 cm-Hz1/2/W at 4.64 μm.
GOES-ABI contains three focal plane modules (FPMs), (i) a visible-near infrared module consisting of three visible and three near infrared channels, (ii) a MWIR module comprised of five channels from 3.9 μm to 8.6 μm and (iii) a 9.6 μm to 13.3 μm, five-channel LWIR module. The VNIR FPM operates at 205 K, and the MWIR and LWIR FPMs operate at 60 K. Each spectral channel has a redundant array built into a single detector chip. Switching is thus permitted from the primary selected array in each channel to the redundant array, given any degradation in performance of the primary array during the course of the mission. Silicon p-i-n detectors are used for the 0.47 μm to 0.86 μm channels. The thirteen channels above 1 μm are fabricated in various compositions of Hg1-xCdxTe, and in this particular case using two different detector architectures. The 1.38 μm to 9.61 μm channels are all fabricated in Hg1-xCdxTe grown by Liquid Phase Epitaxy (LPE) using the HDVIP detector architecture. Molecular beam epitaxy (MBE)-grown Hg1-xCdxTe material are used for the LWIR 10.35 μm to 13.3 μm channels fabricated in Double layer planar heterostructure (DLPH) detectors. This is the same architecture used for the CrIS detectors.
CrIS detectors are 850 μm diameter detectors with each FPAA consisting of nine photovoltaic detectors arranged in a 3 x 3 pattern. Each detector has an accompanying cold preamplifier. SWIR and MWIR FPAAs operate at 98 K and the LWIR FPAA at 81 K, permitting the use of passive radiators to cool the detectors. D* requirements at peak wavelength are ≥ 5.0E+10 Jones for LWIR, ≥ 9.3E+10 Jones for MWIR and ≥ 3.0E+11 Jones for SWIR. All FPAAs exceeded the D* requirements. Measured mean values for the nine photodiodes in each of the LWIR, MWIR and SWIR FPAAs are D* = 5.3 x 1010 cm-Hz1/2/W at 14.0 μm, 1.0 x 1011 cm-Hz1/2/W at 8.0 μm and 3.1 x 1011 cm-Hz1/2/W at 4.64 μm.
Measurement of noise in large-area Hg1-xCdxTe photovoltaic detectors: validation/analysis of results
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
View contact details
No SPIE Account? Create one