Our work details the development and characterization of a portable luminescence imaging device for detecting inflammatory responses and infection in skin wounds. The device includes a CCD camera and close-up lens integrated into a customizable 3D printed imaging chamber to create a portable light-tight imager for luminescence imaging. The chamber has an adjustable light portal that permits ample ambient light for white light imaging. This imager was used to quantify in real time the extent of two-dimensional reactive oxygen species (ROS) activity distribution using a porcine wound infection model. The imager was used to successfully visualize ROS-associated luminescent activities in vitro and in vivo. Using a pig full-thickness cutaneous wound model, we further demonstrate that this portable imager can detect the change of ROS activities and their relationship with vasculature in the wound environment. Finally, by analyzing ROS intensity and distribution, an imaging method was developed to distinguish infected from uninfected wounds. We discovered a distinct ROS pattern between bacteria-infected and control wounds corresponding to the microvasculature. The results presented demonstrate that this portable luminescence imager is capable of imaging ROS activities in cutaneous wounds in a large animal model, indicating suitability for future clinical applications.
A portable imager developed for real-time imaging of cutaneous wounds in research settings is described. The imager consists of a high-resolution near-infrared CCD camera capable of detecting both bioluminescence and fluorescence illuminated by an LED ring with a rotatable filter wheel. All external components are integrated into a compact camera attachment. The device is demonstrated to have competitive performance with a commercial animal imaging enclosure box setup in beam uniformity and sensitivity. Specifically, the device was used to visualize the bioluminescence associated with increased reactive oxygen species activity during the wound healing process in a cutaneous wound inflammation model. In addition, this device was employed to observe the fluorescence associated with the activity of matrix metalloproteinases in a mouse lipopolysaccharide-induced infection model. Our results support the use of the portable imager design as a noninvasive and real-time imaging tool to assess the extent of wound inflammation and infection.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.