KEYWORDS: Signal processing, Signal detection, Control systems, Denoising, Sensing systems, Prototyping, Neural networks, Field programmable gate arrays, Process control
Many real-time cognitive sensing signal processing and control applications require low SWAP edge processors with ultra-low latency adaptation and learning capabilities along with strict throughput, accuracy and power requirements. Achieving 3rd generation AI capabilities, i.e., real-time contextual adaptation, requires fast adaptive inference operations at low power beyond what is achievable with currently available neural networks and deep learning systems. While there has been tremendous progress in the form of edge accelerators, today’s processors lack capabilities for real-time processing, adaptation to novel situations, and low latency decision making. This paper addresses currently unsolved critical challenges in real-time cognitive sensing and autonomous system control applications, such as ultra-wide bandwidth and real-time signal denoising, anomaly detection, blind signal separation, and adaptive system equalization and control. We also present experimental results for low Cost – Size Weight and Power (C-SWAP) hardware implementation of an edge processor prototype implemented on a commercially available FPGA board.
This paper describes progress in the ongoing development of a radar for rotorcraft that utilizes new CMOS ICs that were development for automotive applications. The radar design is discussed, including a lens-based focal plane array that is fed by patch antenna subarray elements. Measured detection pattern data indicates sensitivity sufficient to detect a 1 m2 RCS object at 200 m with a 13dB SNR. Detection pattern data vs. azimuth angle are presented, which indicate a 2.1 deg 3dB beamwidth. Sidelobes are reduced to 30dB below the beam peaks using digital beamforming techniques.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.