KEYWORDS: Avalanche photodetectors, Single photon, Photons, Receivers, Signal to noise ratio, Signal detection, Sensors, LIDAR, Interference (communication), Picosecond phenomena
This paper reports the demonstration of single photon counting receivers with pulse detection efficiency as high as 68%
for 2 photons and single photon counting probabilities as high as 44% at 1550-nm, 1 MHz rate and room temperature
and with linear-mode (below the breakdown voltage), high speed response in the 450-1700 nm spectral band. The
developed single photon counting receiver is based on Epitaxial Technologies' ultra high gain (>300000), low excess
noise, linear-mode APDs, which have been fabricated in dimensions ranging from 25 to 200-μm and array formats up to 32 x 32.
We report high gain, high sensitivity 1064-1550 nm avalanche photodiodes (APDs) that are capable of single photon counting in the linear mode below the breakdown voltage and at room temperature. Epitaxial Technologies has developed AlInAs/GaInAs APDs with multiplication gains as high as 347,000, sensitivities of -69 to -77 dBm and photon detection efficiencies as high as 27%. The single photon counting APDs are free of afterpulse artifacts even for pulse widths in the nanosecond range. They can detect single photons at up to 139 MHz and have the capability for gigahertz repetition rate. Based on innovative and proprietary APD production technologies, the APDs have excess noise factors as low as 2 with the high gain. To our knowledge, these are the highest multiplication gains simultaneous with low excess noise factors and high sensitivities reported so far for long wavelength APDs.
Epitaxial Technologies has developed a single photon counting photoreceiver that can operate in the linear mode to
avoid the drawbacks of Geiger mode detectors. The Company's linear single photon counting photoreceiver array
technology is based on cascading optical amplifiers on-chip with APDs to enable single photon capability below the
APD breakdown voltage through ultra-low noise gain and preamplification. We have already demonstrated components
for this photoreceiver that when implemented will have single photon sensitivities for subnanosecond pulses with high
photon counting efficiency and without afterpulsing at 1064 and
1550-nm.
This paper describes the design, growth and fabrication characterization of novel multi-wavelength QWIP wafers based on InP material systems. We designed, grew, fabricated and characterized AlGaInAs/GaInAs QWIPs suitable for operation at 3-5 μm, and 8-12 μm spectral range. We fabricated mid-wave IR 320 x 250 focal plane arrays, hybridized them with Si -readout circuits and performed radiometric and imaging tests. Excellent imaging results of the mid-wave IR focal plane arrays with an operability of 88% and mean NEDT of 0.09K have been achieved. To our knowledge, this
is the first imaging with InP based QWIPs focal plane array.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.