We used the Monte Carlo code EGSnrc to simulate electron energy loss profiles as well as angle resolved x-ray spectra for metal-layer/substrate combinations in the primary electron energy range of 60-160 keV. We were furthermore able to separate the bremsstrahlung fraction originating in the substrate from that of the metal layer. The simulations were accompanied by experimental investigations. High-energetic electrons of 60-160 keV were directed onto 1-2 μm thin tungsten layers on top of 500 μm diamond substrates. The spectra were recorded by an energy resolved detector positioned in backward direction. We compared the experimental data with the simulation results and found good agreement. An enhanced monochromaticity in backward direction however, as expected from thin film theory, has not been observed due to the influence of the substrate.
This paper presents simulated and measured spectra of a novel type of x-ray tube. The bremsstrahlung generating principle of this tube is based on the interaction of high energetic electrons with a turbulently flowing liquid metal separated from the vacuum by a thin window. We simulated the interaction of 50-150 keV electrons with liquid metal targets composed of the elements Ga, In, Sn, as well as the solid elements C, W and Re used for the electron windows. We obtained x-ray spectra and energy loss curves for various liquid metal/window combinations and thicknesses of the window material. In terms of optimum heat transport a thin diamond window in combination with the liquid metal GaInSn is the best suited system. If photon flux is the optimization criteria, thin tungsten/rhenium windows cooled by GaInSn should be preferred.
A novel type of electron-impact x-ray source based on the interaction of energetic electrons with a turbulently flowing liquid metal target is presented. The electrons enter the liquid through a thin (several microns thick) window, separating the liquid from the vacuum region in which the cathode is situated. Several electron window materials including diamond, tungsten and molybdenum were tested in combination with the liquid metal GaInSn. Satisfactory agreement has been obtained between the predictions of thermal transport models and the measured dependence of the loadability on fluid velocity. The liquid metal technology appears to represent a significant improvement in continuous loadability relative to stationary anode x-ray tubes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.