We present the first full-array optical characterizations of the 280 GHz aluminum-based superconducting microwave kinetic inductance detector (MKID) arrays developed at NIST, CO, USA for the CCAT Collaboration for observing galactic ecology, Sunyaev-Zel'dovich effect, galaxy evolution, and line intensity mapping. The main advantage of aluminum MKIDs is their lower 1/f noise compared to the alternative choice of titanium-nitride (TiN) MKIDs, which would reduce systematic drifts when mapping the sky. We will present the spectral response, polarization characteristics, detector efficiency, and noise equivalent power (NEP) under the relevant conditions for these detectors. Two aluminum and one TiN MKID arrays will form the detector arrays in the 280 GHz instrument module of the Prime-Cam. First light observations are expected in 2025.
The Fred Young Submillimeter Telescope (FYST), on Cerro Chajnantor in the Atacama desert of Chile, will conduct wide-field and small deep-field surveys of the sky with more than 100,000 detectors on the Prime-Cam instrument. Kinetic inductance detectors (KIDs) were chosen as the primary sensor technology for their high density focal plane packing. Additionally, they benefit from low cost, ease of fabrication, and simplified cryogenic readout, which are all beneficial for successful deployment at scale. The cryogenic multiplexing complexity is pulled out of the cryostat and is instead pushed into the digital signal processing of the room temperature electronics. Using the Xilinx Radio Frequency System on a Chip (RFSoC), a highly multiplexed KID readout was developed for the first light Prime-Cam and commissioning Mod-Cam instruments. We report on the performance of the RFSoC-based readout with multiple detector arrays in various cryogenic setups. Specifically we demonstrate detector noise limited performance of the RFSoC-based readout under the expected optical loading conditions.
The Epoch of Reionization Spectrometer (EoR-Spec) is an upcoming Line Intensity Mapping (LIM) instrument designed to study the evolution of the early universe (z = 3.5 to 8) by probing the redshifted [CII] 158 μm fine-structure line from aggregates of galaxies. The [CII] emission is an excellent tracer of star formation since it is the dominant cooling line from neutral gas heated by OB star light and thus can be used to probe the reionization of the early Universe due to star formation. EoR-Spec will be deployed on Prime-Cam, a modular direct-detection receiver for the 6-meter Fred Young Submillimeter Telescope (FYST), currently under construction by CPI Vertex Antennentechnik GmbH and to be installed near the summit of Cerro Chajnantor in the Atacama Desert. This instrument features an image plane populated with more than 6500 Microwave Kinetic Inductance Detectors (MKIDs) that are illuminated by a 4-lens optical design with a cryogenic, scanning Fabry-Perot Interferometer (FPI) at the pupil of the optical system. The FPI is designed to provide a spectral resolving power of R ∼ 100 over the full spectral range of 210–420 GHz. EoR-Spec will tomographically survey the E-COSMOS and E-CDFS fields with a depth of about 4000 hours over a 5 year period. Here we give an update on EoR-Spec’s final mechanical/optical design and the current status of fabrication, characterization and testing towards first light in 2026.
We have created and demonstrated a Virtually Imaged Phased Array (VIPA) device for velocity resolved spectroscopy in the far-IR and will present the first cryogenic (LHe) measurements of the spectral profile of a prototype VIPA at 115.7 µm. A VIPA is a compact spectral filter without moving parts that consists of a resonating cavity that generates angular dispersion due to constructive interference, and that can deliver an instantaneous spectrum with a resolving power of 100,000 or more. Coupled with superconducting direct detection detectors, the VIPA promises unsurpassed sensitivity at velocity resolutions > 3 km/s, making it a prime choice for spectroscopic instruments to observe e.g. protoplanetary disks to trace the gaseous building blocks out of which planets form. Due to their compactness and absence of moving parts, VIPAs are optimal for balloon and space-borne astronomical instruments like the NASA Pioneer Mission POEMM and the proposed NASA Probe Mission FIRSST. The prototype we have measured was made of a 3 × 5 × 1 cm block of high-purity float-zone silicon. The entrance and exit sides of the VIPA are highly parallel, and the entrance side was fully metallized (gold-coated) except for a narrow entrance slit resulting in a reflectivity of 100%, while the exit side was metallized with an inductive mesh resulting in a reflectivity of about 88%. The measurement was done using a custom testbed that included separate cryostats for a cryogenically cooled THz Quantum Cascade Laser (QCL) and the VIPA, as well as a warm pyroelectric detector. The QCL was tuned to a number of different frequencies near 2.59 THz and the detector was scanned along the dispersion direction. Our VIPA prototype achieved the designed resolving power of 15,000 and the spectral profile matched extremely well with the expectations from our simulations. We are now building a full testbed to straightforwardly measure and characterize VIPAs and other GHz/THz filters with resolving powers of order 100,000 using tuneable THz lasers.
Prime-Cam is a first-generation science instrument for the CCAT Observatory’s six-meter aperture Fred Young Submillimeter Telescope (FYST). FYST’s crossed-Dragone design provides high optical throughput to take advantage of its unique site at 5600 m on Cerro Chajnantor in Chile’s Atacama Desert to reach mapping speeds over ten times greater than current and near-term submillimeter experiments. Housing up to seven independent instrument modules in its 1.8-meter diameter cryostat, Prime-Cam will combine broadband polarization-sensitive modules and spectrometer modules designed for observations in several frequency windows between 210 GHz and 850 GHz to study a wide range of astrophysical questions from Big Bang cosmology to the formation of stars and galaxies in the Epoch of Reionization and beyond. In order to cover this range of frequencies and observation modes, each of the modules contains a set of cold reimaging optics that is optimized for the science goals of that module. These optical setups include several filters, three or four anti-reflection-coated silicon lenses, and a Lyot stop to control the field of view and illumination of the primary mirror, satisfy a series of mechanical constraints, and maximize optical performance within each passband. We summarize the design considerations and trade-offs for the optics in these modules and provide a status update on the fabrication of the Prime-Cam receiver and the design of its 1 K and 100 mK thermal BUSs.
The Epoch of Reionization Spectrometer (EoR-Spec) is an instrument module with unique spectroscopic capabilities within the Prime-Cam receiver on the Fred Young Submillimeter Telescope (FYST), a forthcoming six-meter aperture telescope to be situated on Cerro Chajnantor in the Atacama Desert, Chile. Engineered to investigate the processes of reionization and galaxy formation in the early universe, EoR-Spec employs line intensity mapping techniques to measure the [CII] fine-structure lines for the redshift range spanning from z=3.5 to 8. The module integrates a cryogenic scanning Fabry-Perot interferometer (FPI) to meet the spectral resolution criterion of approximately R=100. At the core of the FPI lie two parallel, identical highly reflective silicon-based mirrors, with a 14 cm aperture that form a resonating cavity, referred to as an etalon. These mirrors feature double-layer metamaterial anti-reflection coatings (ARC) on one side, complemented by metal mesh reflectors on the other. The double-layer ARC ensures minimal reflectance on the substrate surface and facilitates tailoring of the reflectance profile across the FPI bandwidth. The characterization of silicon mirrors and prototype testing are crucial steps in ensuring the optimal performance and functionality of the EoR-Spec instrument. Here we present an updated account of the ongoing efforts involved in the characterization of silicon mirrors and the mounting test conducted for the EoR-Spec instrument.
The epoch of reionization spectrometer (EoR-Spec) is an instrument module that will be deployed in the Prime-Cam receiver on the Fred Young Submillimeter Telescope (FYST), which is a 6m off-axis telescope for the CCAT-prime facility. FYST is currently being built in the Atacama Desert in Chile at an altitude of 5600 m. With the Fabry-Perot interferometer (FPI), EoR-Spec will measure the 158 µm [CII] line intensity at redshifts from 3.5 to 8 (420 to 210 GHz), with the lower redshifts tracing star formation and higher redshifts tracing the late stages of reionization. An EoR-Spec module includes three monolithic and monochroic feedhorn-coupled arrays of kinetic inductance detectors (KIDs), two of which are centered at 260 GHz with the other centered at 370 GHz. We present the design and integration process of the EoR-Spec detector array at both bands. The 370 GHz detector array will consist of 3072 detectors and each of the 260 GHz arrays will consist of 1728 detectors. Each of the detector arrays contains an aluminum feedhorn array and is read out by a few pairs of coaxial cables.
The Epoch of Reionization Spectrometer (EoR-Spec) will be an instrument module for the Prime-Cam receiver on the CCAT-prime Collaboration’s Fred Young Submillimeter Telescope (FYST), a 6-m primary mirror Crossed Dragone telescope. With its Fabry-Perot interferometer (FPI), EoR-Spec will step through frequencies between 210 and 420 GHz to perform line intensity mapping of the 158 µm [CII] line in aggregates of star-forming galaxies between redshifts of 3.5 and 8 to trace the evolution of structure in the Universe during the epoch of reionization. Here we present the optical design of the module including studies of the optical quality and other key parameters at the image surface. In order to achieve the optimal resolving power (R∼100) with the FPI, it is important to have a highly collimated beam at the Lyot stop of the system; the optimization process to achieve this goal with four lenses instead of three as used in other Prime-Cam modules is outlined. As part of the optimization, we test the effect of replacing some of the aspheric lenses with biconic lenses in this Crossed Dragone design and find that the biconic lenses tends to improve the image quality across the focal plane of the module.
Mod-Cam is a first light and commissioning instrument for the CCAT-prime project’s six-meter aperture Fred Young Submillimeter Telescope (FYST), currently under construction at 5600 m on Cerro Chajnantor in Chile’s Atacama Desert. Prime-Cam, a first-generation science instrument for FYST, will deliver over ten times greater mapping speed than current and near-term facilities for unprecedented 280–850 GHz broadband and spectroscopic measurements with microwave kinetic inductance detectors (MKIDs). CCAT-prime will address a suite of science goals, from Big Bang cosmology to star formation and galaxy evolution over cosmic time. Mod-Cam deployment on FYST with a 280 GHz instrument module containing MKID arrays is planned for early science observations in 2024. Mod-Cam will be used to test instrument modules for Prime-Cam, which can house up to seven instrument modules. We discuss the design and status of the 0.9 m diameter, 1.8 m long Mod-Cam receiver and 40 cm diameter 280 GHz instrument module, with cold stages at 40 K, 4 K, 1 K, and 100 mK. We also describe the instrument module’s cryogenic readout designs to enable the readout of more than 10,000 MKIDs across 18 networks.
The Epoch of Reionization Spectrometer (EoR-Spec) is one of the instrument modules to be installed in the Prime-Cam receiver of the Fred Young Submillimeter Telescope (FYST). This six-meter aperture telescope will be built on Cerro Chajnantor in the Atacama Desert in Chile. EoR-Spec is designed to probe early star-forming regions by measuring the [CII] fine-structure lines between redshift z = 3.5 and z = 8 using the line intensity mapping technique. The module is equipped with a scanning Fabry-Perot interferometer (FPI) to achieve the spectral resolving power of about RP = 100. The FPI consists of two parallel and identical, highly reflective mirrors with a clear aperture of 14 cm, forming a resonating cavity called etalon. The mirrors are silicon based and patterned with double-layer metamaterial anti-reflection coatings (ARC) on one side and metal mesh reflectors on the other. The double-layer ARCs ensure a low reflectance at one substrate surface and help tailor the reflectance profile over the FPI bandwidth. Here we present the design, fabrication processes, test setup, and characterization of silicon mirrors for the FPI.
The Fred Young Submillimeter Telescope (FYST), which is the telescope of the CCAT-prime project, will be located at 5600 m near the summit of Cerro Chajnantor in northern Chile, and will host the modular instrument called Prime-Cam. Two of the instrument modules in Prime-Cam will be a spectrometer with a resolving power of R ∼ 100 and populated with a detector array of several thousand KIDs (Kinetic Inductance Detectors). The main science goal of this spectrometer module, called EoR-Spec, is to probe the Epoch of Reionization (EoR) in the early universe using the Line Intensity Mapping (LIM) technique with the redshifted [CII] fine-structure line. This presentation provides an overview of the optical, mechanical, and spectral design of EoR-Spec, as well as of the detector array that will be used. The optical design consists of four silicon lenses that have anti-reflection metamaterial layers. A scanning Fabry-Perot Interferometer (FPI) will be located at the pupil and provides the spectral resolution over the full spectral coverage of 210 GHz to 420 GHz in two orders, resulting in a redshift coverage of the [CII] line from z = 3.5 to z = 8. The detector array consists of three subarrays of KIDs, two of which are tuned for the frequency range between 210 GHz and 315 GHz, and one that is tuned for the 315 GHz to 420 GHz range. The angular resolution will be between about 30′′ to 50′′. This presentation also addresses the spectral and spatial scanning strategy of EoR-Spec on FYST. EoR-Spec is expected to be installed into Prime-Cam about 1 year after first light of FYST.
The CCAT-prime project's first light array will be deployed in Mod-Cam, a single-module testbed and first light cryostat, on the Fred Young Submillimeter Telescope (FYST) in Chile's high Atacama desert in late 2022. FYST is a six-meter aperture telescope being built on Cerro Chajnantor at an elevation of 5600 meters to observe at millimeter and submillimeter wavelengths.1 Mod-Cam will pave the way for Prime-Cam, the primary first generation instrument, which will house up to seven instrument modules to simultaneously observe the sky and study a diverse set of science goals from monitoring protostars to probing distant galaxy clusters and characterizing the cosmic microwave background (CMB). At least one feedhorn-coupled array of microwave kinetic inductance detectors (MKIDs) centered on 280 GHz will be included in Mod-Cam at first light, with additional instrument modules to be deployed along with Prime-Cam in stages. The first 280 GHz detector array was fabricated by the Quantum Sensors Group at NIST in Boulder, CO and includes 3,456 polarization- sensitive MKIDs. Current mechanical designs allow for up to three hexagonal arrays to be placed in each single instrument module. We present details on this first light detector array, including mechanical designs and cold readout plans, as well as introducing Mod-Cam as both a testbed and predecessor to Prime-Cam.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.