Hybrid organic-inorganic lead halide perovskite solar cells have made rapid advancements in efficiency, approaching and overtaking those of other thin-film technologies. Before commercialization can be achieved, however, the stability of perovskite solar cells must be improved. While moisture exposure can be mitigated through careful encapsulation, the thermal stability of the cell, with respect to both intrinsic degradation of the absorber material and extrinsic reactions with other layers, is critical.
We evaluate thermal stability of semitransparent FA0.83Cs0.17Pb(I0.83Br0.17)3 and MAPbI3 perovskite solar cells at 85C in a nitrogen environment for up to 1000 hours and show that the primary factor in cell degradation is reaction with a metal contact. Using depth profiling in x-ray photoelectron spectroscopy, we show that silver contacts not only create a driving force for iodine migration from the perovskite, but also surprisingly have the potential to diffuse through a sputtered tin-doped indium oxide (ITO) window layer, an atomic layer deposited (ALD) tin oxide layer, and an evaporated fullerene electron transport layer into the perovskite, harming the performance of the perovskite solar cell.
The poor barrier quality of the transparent conducting oxide (TCO) is due largely to diffusion channels in domain boundaries created by a proliferation of the existing rough perovskite morphology, shown with scanning electron microscopy (SEM). We investigate several solutions, including spin-coating the fullerene layer and using amorphous indium zinc oxide (IZO) as an alternative TCO. We discuss the performance and viability of each solution as well as implications for perovskite solar cell design.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.