Functional near-infrared spectroscopy (fNIRS) is recently utilized as a new approach to assess resting-state functional connectivity (RSFC) in the human brain. For any new technique or new methodology, it is necessary to be able to replicate similar experiments using different instruments in order to establish its liability and reproducibility. We apply two different diffuse optical tomographic (DOT) systems (i.e., DYNOT and CW5), with various probe arrangements to evaluate RSFC in the sensorimotor cortex by utilizing a previously published experimental protocol and seed-based correlation analysis. Our results exhibit similar spatial patterns and strengths in RSFC between the bilateral motor cortexes. The consistent observations are obtained from both DYNOT and CW5 systems, and are also in good agreement with the previous fNIRS study. Overall, we demonstrate that the fNIRS-based RSFC is reproducible by various DOT imaging systems among different research groups, enhancing the confidence of neuroscience researchers and clinicians to utilize fNIRS for future applications.
In this work, T1-, T2- and PD-weighted MR images of multiple sclerosis (MS) patients, providing information on the properties of tissues from different aspects, are treated as three independent information sources for the detection and segmentation of MS lesions. Based on information fusion theory, a knowledge guided information fusion framework is proposed to accomplish 3-D segmentation of MS lesions. This framework consists of three parts: (1) information extraction, (2) information fusion, and (3) decision. Information provided by different spectral images is extracted and modeled separately in each spectrum using fuzzy sets, aiming at managing the uncertainty and ambiguity in the images due to noise and partial volume effect. In the second part, the possible fuzzy map of MS lesions in each spectral image is constructed from the extracted information under the guidance of experts' knowledge, and then the final fuzzy map of MS lesions is constructed through the fusion of the fuzzy maps obtained from different spectrum. Finally, 3-D segmentation of MS lesions is derived from the final fuzzy map. Experimental results show that this method is fast and accurate.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.