Since the advent of the so-called “Newspace” approach, new actors of the space industry have replaced prudent space qualification by spectacular trial and error approaches. While such disruptive method generates emulation to reduce qualification, it remains that space industry face very challenging environmental stresses such as high mechanical requirements, operation in vacuum and radiations. The purpose of this paper is to give an overview of the application of Newspace methodology that has been applied for the demonstrator FOLC2.
MPB has developed a 10W Polarization Maintaining Optical Fiber amplifier (1550 nm) for space applications. The prototype is based on three stages of optical amplification with photodiodes at each stage, monitoring the output power. It includes the control electronics and software with feedback loops to dynamically control and monitor the amplifier. The design had to overcome many challenges to comply with the mechanical, thermal, radiation, and vacuum requirements for the LEO satellite space environment, while at the same time meeting the price targets for LEO constellations by maximizing the use of commercial off the shelf (COTS) components. The following were the main challenges: a) to effectively dissipate the heat generated (75-90 W); b) to select radiationtolerant electronics to drive the needed electrical current; c) to source and effectively implement components, such as the combiners and isolators, in the high power optical path compatible with vacuum at 10W output. The major challenge with regard to heat management was to find an optimal method to dissipate the heat from the third stage (high power) Erbium Ytterbium Doped Fiber. Commonly, this fiber is spooled on an Aluminium spool. The difference in the Constant Temperature Extension (CTE) between the fiber (low) and Aluminium (high) leads to a detachment of the fiber at low temperature with a high risk of breaking the fiber when passing from OFF to ON. At high temperatures, the Aluminium extends much more than the fiber, leading to an over tension on the fiber with a high risk of mechanical breakage. Different designs of the spool, supports inside the box, selection of materials, and process implementations were tried. An innovative, proprietary method was developed to satisfy this requirement. The unit successfully passed performance testing between -20°C and +40°C in vacuum with 10W output, with a wall plug efficiency of 11%. The lower temperature limitation was due to the specification of the high-power laser diodes. The higher temperature was limited by the local heating and risk of mechanical breaking of the third-stage COTS combiner and isolator. Vibration and mechanical shock are not foreseen to be an issue. The simulation demonstrated the prototype is complying with these requirements. Moreover, MPB has built similar instruments at lower power levels that have successfully passed these qualification tests. The components used were available as COTS products, including the radiation-tolerant electronics. All the components were qualified individually for >30 krad, in vacuum, and for the temperature range -35°C to +65°C except for the highpower laser diodes which were limited to -25°C. MPBC is continuing the qualification, implementing minor design changes, in order to satisfy the complete temperature range (-35°C to +65°C).
The presentation slides for “Round Table: The Challenge of Photonic Components Space Qualification, is there a better way?” are available at http://doi.org/10.1117/12.2536059, under the Supplemental Content tab.
MPB is developing space qualified 10 W End Of Life (EOL) optical amplifiers for longer range applications. Their design employs Polarization Maintaining (PM) Erbium and Erbium-Ytterbium Double Clad Fiber (EDF, EYDF) singlemode fibers. Absorption losses of the EDF and EYDF due to radiation in space are the major challenge to overcome. The gamma radiation tests show that the PM fibers have a greater sensitivity than standard fibers. However, in many applications, PM amplifiers show greater performances which is important for the power consumption.
Furthermore, MPB’s design minimizes Stimulated Brillouin Scattering in the fibers, a major obstacle to be overcome at this power level, even for on ground applications. Moreover, the compatibility with space environment (vacuum, temperature cycling, and radiation) of the high-power optical and electronic components (isolators, laser-diode pumps, current drivers) has to be demonstrated.
The proposed optical designs compensate for radiation-induced losses, without resorting to the use of expensive radiation qualified fibers- a unique method of power recuperation through the photo-bleaching of the active fiber.
We present an optical microsystem aimed to be integrated into a nanomechanical biosensor for functional genomic analysis. The operation principle is based on a sub-nanometer resolution optical measurement of a cantilever deflection caused by a surface stress when the target nucleic acid sample hybridises to the nucleic acid probe on the active side of the cantilever. The resulting deflection, of the order of nanometers, is measured by an optical system, in which a laser beam reflects off the back of the cantilever to a position sensitive photo-detector. We report in this paper on the design, fabrication and test of the optical head associated with an optical coupling system which enables detection of the presence of target nucleic acid on the cantilever by amplifying the deflection caused by the stress.
VCSELs (Vertical Cavity Surface Emitting Lasers) are nowadays more and more exploited in optoelectronic applications, monitoring their lasing power in a compact and low cost manner becomes crucial. To collect and control the output light, an external photodetector associated with an optical microlens array can be used. Integrated solutions based on the use of a bulk or QW photodetection section added in single-or double-cavity structures have also been proposed. Here, we have investigated a simpler solution based on a standard VCSEL array. Light emitted by a VCSEL has been electrically detected by adjacent VCSELs located in the same array, using in plane optical waveguiding of spontaneous emission in the intrinsic central zone of the devices. We show that the detected photocurrent can be related to the power of the emitting VCSEL. Signal intensity has been studied as a function of VCSELs distance. This method could lead to a more efficient way to monitor VCSEL emission.
We present here a design of a coupling element aimed to be integrated into a nanomechanical biosensor for functional genomic analysis. The operation principle is based on a sub-nanometer resolution optical measurement of a cantilever deflection caused by a surface stress when the target nucleic acid sample hybridizes to the nucleic acid probe on the active side of the cantilever. The resulting deflection, of the order of nanometers, is measured by an optical system, in which a laser beam reflects off the back of the cantilever to a position sensitive photo-detector. We study in this paper three polymer optical coupling systems which could allow to detect the presence of target nucleic acid on the cantilever by amplifying the deflection caused by the stress.
The increasing interest for high-speed, compact and low cost devices for optoelectronic applications such as bi-directional optical interconnects, optical imaging or telemetry has recently led to focus on the ability for the vertical-cavity surface-emitting lasers to be used as resonant cavity enhanced photodetectors for dual-purpose applications. Here we present results on design, fabrication and characterization of an oxide-confined 830nm top-emitting laser for self-aligned emission and photodetection. In this single-cavity GaAs-based device, submitted alternatively to forward and reverse bias, the oxide layer is not only used to obtain a single mode emission but also to enable decoupling between a small surface emission and a large surface detection. However the optical path is observed to change because of the refractive index difference between the oxidized and non-oxidized zones of the structure. This leads to a detrimental blue-shift on the wavelength of the Fabry-Perot cavity mode. In this work, we demonstrate this effect in photodetection by the means of spatially localized photocurrent and reflectance spectra measurements. These results show that the photocurrent is correctly collected in the whole device despite of the presence of an oxide layer. The results obtained on selective etching for optimisation of this dual-purpose device are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.