Understanding pigmentation’s effect on pulse oximetry is critical amid evidence that pulse oximetry is less accurate for patients with pigmented skin. Optical phantoms can help validate oximeters, but commercial phantoms do not vary pigmentation. We develop a resin-based 3D printing method that generates mechanically flexible phantoms with tunable optical properties and <100 µm diameter channels. Using a reflectance-mode Maxim 86171 pulse oximeter, we evaluate how photoplethysmogram waveforms change as phantom pigmentation increases, and test an algorithm for estimating pigmentation from waveforms alone. 3D-printed phantoms can provide a platform for testing pulse oximeter performance across the spectrum of human pigmentation.
Pulse oximeters are widely used in healthcare systems to estimate blood oxygen saturation level (SpO2) using red and infrared light. Recent clinical and simulation studies reported that in darkly pigmented subjects oximeter over-estimates SpO2 which could lead to higher rates of occult hypoxemia in highly pigmented subjects. The probable solutions to solve this over-estimation bias could be modification of the current oximeter design, calibration enrollment or modification of oximeter ratio (R). In this study, a modification of the current oximeter ratio (R) was presented by using different combinations of currently estimated oximeter parameters. Simulation results showed that modified oximeter ratio reduces over-estimation bias in highly pigmented subjects compared to the conventional oximeter ratio. In the regions near hypoxemia threshold (90% oxygenation level), the over-estimation bias in the simulated test cohort could reduce from 1.36% to -0.01% if modified oximeter ratio is used. Results show that modification of oximeter ratio could be used in future to improve oximeter accuracy and produce pigmentation independent outcomes.
The ability to perform routine monitoring of bone quality is crucial for patients with bone diseases such as osteoporosis. Current assessments of bone quality are expensive and cannot be used regularly without exposing patients to ionizing radiation. Alternatively, visible-near infrared (Vis-NIR) spectroscopy is a non-invasive, non-ionizing technique that can be used to assess the compositional properties of bone. Recently, studies have reported agreement between transcutaneous Vis-NIR spectroscopic measures of bone quality and conventional radiographic measures collected from the second metacarpal bone of the hand. Computational simulations using Monte-Carlo (MC) modeling offer a valuable tool to better understand the relative contributions from the underlying bone in comparison with the superficial skin, as well as to investigate the relative benefits of specific fiberoptic illumination/collection geometries for transcutaneous measurement of metacarpal bone. To inform the model, skin from above the 2nd metacarpal bone and the bone itself were dissected from human cadaver hands. Reflectance and transmittance measurements of the skin and bone tissues were taken using an integrating sphere setup in the range of 400 nm-1800 nm. Optical properties were estimated using the Inverse Adding Doubling (IAD) technique. MC models of skin-bone tissues were created using these estimated optical properties as well as physical measurements of tissue thickness, and simulations of fiber-optic Vis-NIR measurements were performed. Results indicate up to 30% of the absorbance signal arises from contributions from the bone in specific spectral ranges.
Significance: Fiber-optic extended-wavelength diffuse reflectance spectroscopy (EWDRS) using both visible/near-infrared and shortwave-infrared detectors enables improved detection of spectral absorbances arising from lipids, water, and collagen and has demonstrated promise in a variety of applications, including detection of nerves and neurovascular bundles (NVB). Development of future applications of EWDRS for nerve detection could benefit from the use of model-based analyses including Monte Carlo (MC) simulations and evaluation of agreement between model systems and empirical measurements.Aim: The aim of this work is to characterize agreement between EWDRS measurements and simulations and inform future applications of model-based studies of nerve-detecting applications.Approach: A model-based platform consisting of an ex vivo microsurgical nerve dissection model, unique two-layer optical phantoms, and MC model simulations of fiber-optic EWDRS spectroscopic measurements were used to characterize EWDRS and compare agreement across models. In addition, MC simulations of an EWDRS measurement scenario are performed to provide a representative example of future analyses.Results: EWDRS studies performed in the common chicken thigh femoral nerve microsurgical dissection model indicate similar spectral features for classification of NVB versus adjacent tissues as reported in porcine models and human subjects. A comparison of measurements from unique EWDRS issue mimicking optical phantoms and MC simulations indicates high agreement between the two in homogeneous and two-layer optical phantoms, as well as in dissected tissues. Finally, MC simulations of measurement over a simulated NVB indicate the potential of future applications for measurement of nerve plexus.Conclusions: Characterization of agreement between fiber-optic EWDRS measurements and MC simulations demonstrates strong agreement across a variety of tissues and optical phantoms, offering promise for further use to guide the continued development of EWDRS for translational applications.
Modern mobile phone imaging sensors wide availability and high quality have enabled development of low-cost imaging and sensing approaches that utilize the camera, including those which detect diffuse optical interactions and produce quantitative transcutaneous measures analogous to clinical techniques for bilirubin and oxygenation sensing. Concurrently, recent clinical studies report overestimation bias from dark skinned patients in transcutaneous bilirubinometery (TcB) and pulse oximetry. Here, Monte Carlo simulations of TcB and oximetery were used to investigate the source of possible racial biases in clinical measurements. Simulations of device calibration studies with dark, mixed, and light skinned cohorts were tested against groups with similar and different racial distributions. Results implicate a combination of tissue optics and biased enrollment in calibration studies for systematic overestimation in both TcB and oximetry. Next, identical Monte Carlo simulations were performed with a 2D image sensor capable of detecting spatially resolved diffuse reflectance. Quantification models were developed from simulated calibration studies where reflectance was extracted from 1 to 5 unique sensor regions of interest (ROI), followed by evaluation against test cohorts with different racial distributions. The results indicated overestimation bias in darkly pigmented subjects could be reduced through incorporation of an increasing number of sensor ROI’s. Models for quantification of bilirubin were then developed using clinical data from our mobile phone based TcB study, and increasing number of sensor ROI’s improved model performance (r2) . These results suggest promise for the development of mobile image-sensor based spatially resolved diffuse reflectance for improving accuracy and reducing racial bias in transcutaneous measurements.
KEYWORDS: Tissues, Monte Carlo methods, Animal model studies, Statistical modeling, Optical properties, Optical phantoms, Diffuse reflectance spectroscopy, Near infrared
Extended-wavelength diffuse reflectance spectroscopy (EWDRS) combines two spectrometers extending the wavelength range up to 1500 nm, which provides more information than visible or near-infrared DRS alone and indicates the improved ability to differentiate biological tissues. Identification of Neurovascular bundles (NVB) is a main challenging during surgery, while current EWDRS studies have been prove the ability in open surgeries. However, theoretical simulations for complex multilayer structure in EWDRS range have yet to be reported. Monte Carlo (MC) model has been developed to accurately simulate the random propagations in complex and multilayered structures in various optical applications. We report the design and development of an EWDRS system with a fiber optic EWDRS probe. In addition, 2-layer tissue simulating phantoms with different top-layer thickness are developed and MC simulations of EWDRS spectra based on the optical properties of phantoms are compared against empirical measurements, demonstrating the accuracy of MC model in simulating multilayers structures and a superficial bias in probe sampling volume. Finally, measurements taken during dissection of the NVB in an ex vivo chicken thigh animal model are reported and confirm the ability of EWDRS to identify peripheral NVB from adjacent tissues. The results showed the developed phantoms had the ability to mimic blood content and lipid absorption features in visible and near-infrared region and simulated spectra had same tendency as measured spectra. Additionally, the classification results from the animal model displayed the overall accuracy was over 92%, which indicated the feasibility of identification of NVB from adjacent tissues.
Pulse oximetry is a common tool to perform a non-invasive optical estimate (SpO2) of arterial blood oxygen saturation level (SaO2). Although the principle of pulse oximetry has been established for a long time Recent clinical studies reported oximeter over-estimation bias in black patients. Measurement accuracy is an important factor, as over-estimation could impact clinical decision-making. Prior Monte-Carlo (MC) simulation-based studies showed increased melanin could reduce the oximeter signal intensity. These studies didn’t show the impact of pigmentation on calibration equation development in a population cohort. Extending MC simulations to study the influence of bias in calibration model enrollment, along with the corresponding optical estimation errors would offer insight into the basis of important clinical observations. Here, an MC simulation platform was developed to assess how pigmentation distribution in the racial demographics could impact calibration model development. MC simulations of oximeter measurements from <1200 simulated patient finger models were generated using a stochastic sampling-based technique, where patient optical properties (including pigmentation) were statistically assigned to generate a variation of measurements across different population cohorts. MC simulations of oximeter calibration studies representative of prior FDA 510(k) guidelines e.g.- minimum 20% darkly pigmented population) in comparison with alternative enrollment distributions. Performance of oximeter calibration equations was evaluated with unique population distributions of test subjects. Results showed that even if the calibration equations were developed from a representative population cohort, the predicted SpO2 show overestimation in high pigmentation cohorts. This over-estimation minimizes when the calibration is generated from distributions with an increased pigmented subject enrollment. The sensitivity to detect hypoxia in the highly pigmented cohort (sensitivity=0.95) is lower than the low pigmented cohort(sensitivity=0.98) when the representative population distribution was used to develop the calibration equation.
Extreme or prolonged neonatal jaundice (hyperbilirubinemia) can result in permanent neurological impairment and even death. In developing countries, risk factors that increase the risk of neurodevelopmental impairment, such as sepsis, malnutrition, and certain genetic conditions are common. Administering treatments can be simple but identification of at-risk infants through visual screening is unreliable. Infants in the US are routinely screened prior to hospital discharge using transcutaneous bilirubinometry (TcB), a non-invasive technique based on diffuse reflectance. In low-resource settings such as rural sub-Saharan Africa, TcB devices are not available to traditional birth attendants and doctors; however, it is increasingly common for these personnel to carry mobile phones equipped with a camera and flash. We have previously reported initial feasibility of TcB utilizing the built-in camera and flash of the mobile phone, a Monte Carlo model driven design of a snap-on optical assembly. Here, we report the experience and results from clinical studies in newborns which compare mobile-phone based measurements of TcB with corresponding serum bilirubin levels. These results will lead to a discussion of feasibility and limitations for mobile-phone based TcB.
Monte Carlo (MC) modeling of photon propagation in turbid media is an essential tool for understanding optical interactions between light and tissue. Insight gathered from outputs of MC models assists in mapping between detected optical signals and bulk tissue optical properties, and as such, has proven useful for inverse calculations of tissue composition and optimization of the design of optical probes. MC models of Raman scattering have previously been implemented without consideration to background autofluorescence, despite its presence in raw measurements. Modeling both Raman and fluorescence profiles at high spectral resolution requires a significant increase in computation, but is more appropriate for investigating issues such as detection limits. We present a new Raman Fluorescence MC model developed atop an existing GPU parallelized MC framework that can run more than 300x times faster than CPU methods. The robust acceleration allows for the efficient production of both Raman and fluorescence outputs from the MC model. In addition, this model can handle arbitrary sample morphologies of excitation and collection geometries to more appropriately mimic experimental settings. We will present the model framework and initial results.
Kidney cancer affects 65,000 new patients every. As computerized tomography became ubiquitous, the number of small, incidentally detected renal masses increased. About 6,000 benign cases are misclassified radiographically as malignant and removed surgically. Raman spectroscopy (RS) has been widely demonstrated for disease discrimination, however intense near-infrared auto-fluorescence of certain tissues (e.g kidney) can present serious challenges to bulk tissue diagnosis. A 1064nm excitation dispersive detection RS system demonstrated the ability to collect spectra with superior quality in tissues with strong auto-fluorescence. Our objective is to develop a 1064 nm dispersive detection RS system capable of differentiating normal and malignant renal tissue. We will report on the design and development of a clinical system for use in nephron sparing surgeries. We will present pilot data that has been collected from normal and malignant ex vivo kidney specimens using a benchtop RS system. A total of 93 measurements were collected from 12 specimens (6 Renal Cell Carcinoma, 6 Normal ). Spectral classification was performed using sparse multinomial logistic regression (SMLR). Correct classification by SMLR was obtained in 78% of the trials with sensitivity and specificity of 82% and 75% respectively. We will present the association of spectral features with biological indicators of healthy and diseased kidney tissue. Our findings indicate that 1064nm RS is a promising technique for differentiation of normal and malignant renal tissue. This indicates the potential for accurately separating healthy and cancerous tissues and suggests implications for utilizing RS for optical biopsy and surgical guidance in nephron sparing surgery.
Infants in the US are routinely screened for risk of neurodevelopmental impairment due to neonatal jaundice using transcutaneous bilirubinometry (TcB). In low-resource settings, such as sub-Saharan Africa, TcB devices are not common, however, mobile camera-phones are now widespread. We provide an update on the development of TcB using the built-in camera and flash of a mobile phone, along with a snap-on adapter containing optical filters. We will present Monte Carlo Extreme modeling of diffuse reflectance in neonatal skin, implications in design, and refined analysis methods.
Peripheral arterial disease (PAD) is an atherosclerotic disease of the extremities that leads to high rates of myocardial infarction and stroke, increased mortality, and reduced quality of life. PAD is especially prevalent in diabetic patients, and is commonly modeled by hind limb ischemia in mice to study collateral vessel development and test novel therapies. Current techniques used to assess recovery cannot obtain quantitative, physiological data non-invasively. Here, we have applied hyperspectral imaging and swept source optical coherence tomography (OCT) to study longitudinal changes in blood oxygenation and vascular morphology, respectively, intravitally in the diabetic mouse hind limb ischemia model. Additionally, recommended ranges for controlling physiological variability in blood oxygenation with respect to respiration rate and body core temperature were determined from a control animal experiment. In the longitudinal study with diabetic mice, hyperspectral imaging data revealed the dynamics of blood oxygenation recovery distally in the ischemic footpad. In diabetic mice, there is an early increase in oxygenation that is not sustained in the long term. Quantitative analysis of vascular morphology obtained from Hessian-filtered speckle variance OCT volumes revealed temporal dynamics in vascular density, total vessel length, and vessel diameter distribution in the adductor muscle of the ischemic limb. The combination of hyperspectral imaging and speckle variance OCT enabled acquisition of novel functional and morphological endpoints from individual animals, and provides a more robust platform for future preclinical evaluations of novel therapies for PAD.
There is potential for Raman spectroscopy (RS) to complement tools for bone diagnosis due to its ability to assess compositional and organizational characteristics of both collagen and mineral. To aid this potential, the present study assessed specificity of RS peaks to the composition of bone, a birefringent material, for different degrees of instrument polarization. Specifically, relative changes in peaks were quantified as the incident light rotated relative to the orientation of osteonal and interstitial tissue, acquired from cadaveric femurs. In a highly polarized instrument (10 6 ∶1 extinction ratio), the most prominent mineral peak (ν1 Phosphate at 961 cm −1 ) displayed phase similarity with the Proline peak at 856 cm −1 . This sensitivity to relative orientation between bone and light observed in the highly polarized regime persisted for certain sensitive peaks (e.g., Amide I at 1666 cm −1 ) in unaltered instrumentation (200∶1 extinction ratio). Though Proline intensity changed with bone rotation, the phase of Proline matched that of ν1 Phosphate. Moreover, when mapping ν1 Phosphate/Proline across osteonal-interstitial borders, the mineralization difference between the tissue types was evident whether using a 20x or 50x objectives. Thus, the polarization bias inherent in commercial RS systems does not preclude the assessment of bone composition when using phase-matched peaks.
Photothermal optical coherence tomography (PT-OCT) has the potential to increase the molecular specificity of OCT for
in vivo pre-clinical studies of cancer, in order to better understand drug uptake and treatment response. However, the use
of PT-OCT to image contrast agents in vivo has yet to be demonstrated. Here, we characterize PT-OCT imaging of gold
nanorod (GNR) contrast agents, and we further apply these techniques for in vivo imaging. The PT-OCT signal was
characterized and compared to a numerical model of the bio-heat equation with respect to varying photothermal chop
frequency, photothermal laser power, OCT image reflectivity, and concentration of GNRs. PT-OCT images were taken
of GNR+ and GNR- solid agarose phantoms in capillary tubes, and 400 pM GNR matrigel injections into a mouse ear.
Experimental PT-OCT data varied as predicted with closed form models of the bio-heat equation. Increasing the
concentration of GNRs caused a linear increase in the PT-OCT signal, with GNR sensitivity as low as 7.5 pM compared
to a scattering control (p<0.01). PT-OCT images in capillary tubes and the live mouse ear demonstrated an appreciable
increase in signal in the presence of GNRs compared to controls. The demonstrated in vivo PT-OCT capabilities using
GNR contrast agents is sufficient to image molecular expression, based on published molecular imaging studies
employing GNR contrast agents in vivo. Therefore, this work demonstrates an important transition of PT-OCT to in vivo
imaging, and marks the next step towards its use for in vivo molecular imaging.
Raman spectroscopy (RS) and optical coherence tomography (OCT) are powerful tools for optical analysis of tissues with mutually complementary strengths and limitations. OCT excels at visualizing tissue microstructure but lacks molecular specificity, while RS can relay tissue biochemical composition but typically cannot relate microstructure. Previous implementations of combined RS-OCT have utilized a common sample arm while maintaining independent RS and OCT detection arms. We present the design and application of an integrated RS-OCT instrument with a common detection arm for both RS and OCT. The detector is a spectrograph capable of sequential detection of the 855-nm OCT signal and the Raman scatter generated by a 785-nm source. The capabilities of the instrument are demonstrated ex vivo in the calvaria and retina of rodents, as well as in vivo in human skin.
Raman spectroscopy (RS) and Optical Coherence Tomography (OCT) are powerful tools for optical analysis of tissues
with complimentary strengths. OCT excels and visualizing tissue microstructure while RS can relay tissue biochemical
composition. Both instruments have significant potential to serve as valuable tools in non-invasive characterization of
the rodent models of retinal disease. In this abstract we present the design and application of a common detector
combined RS-OCT instrument for evaluating the morphological and biochemical differences in a rat model for oxygen
induced retinopathy. Rat pups that have undergone a variable oxygen treatment are compared to rats raised in room air.
Images and spectra collected at an age of 26 days postnatal demonstrate differences in both the thickness of the inner and
outer nuclear layers, but also in the biochemical composition.
Prostate cancer is the most common primary tumor in men, with a high propensity to metastasize to bone. Bone metastases in prostate cancer are associated with active pathologic bone remodeling, leading to increased mortality and morbidity. Detailed characterization of bone metastases is important in the management of prostate cancer. Raman spectroscopy was applied in this study to investigate the structure and composition of metastatic bone in prostate cancer with the ultimate goal of identifying spectral features that are related to the alterations in bone quality as the bone metastases develop. Osteoblastic-, osteolytic- and tumor-absent bone specimens from prostate cancer patients were investigated using bench-top Raman microspectroscopy. Raman derived measurements of collagen mineralization, mineral crystallinity, and carbonate substitution were calculated. The osteolytic lesions demonstrated significantly lower collagen mineralization, determined by phosphate ν1/proline, and higher carbonate substitution than normal and
osteoblastic bones. Mineral crystallinity was significantly lower in both blastic and lytic specimens. In addition, a significant increase in the ratio of hydroxyproine: proline was observed in the osteoblastic specimen, indicating an increase in the content of hydroxyproline at the blastic lesions. This study demonstrate that Raman spectroscopy shows promise in determining alterations in osteoblastic and osteolytic bone metastases as well as assessing the response of metastatic bone to therapies.
Skin cancer is the most commonly occurring cancer, with incidence rates rising annually. Realizing favorable outcomes requires early diagnosis, for which the current standard is biopsy followed by histopathology. This process can be invasive, subjective, time consuming, and costly. Optical techniques, including Optical Coherence Tomography (OCT) and Raman Spectroscopy (RS), have been developed to perform non-invasive characterization of skin lesions, however neither is without limitation. Here, we demonstrate a clinical instrument for morphological and biochemical
characterization of skin cancers with combined RS-OCT. The portable instrument utilizes independent RS and OCT system backbones, and is integrated in a common clinical probe. The potential of the probe for cancer diagnosis is demonstrated on malignant and non-malignant lesions.
Knocking out a gene in mice provide the means to investigate potential regulators of the compositional, structural, and biomechanical properties of bone. Suppressing genes related to matrix turnover (bone remodeling) can have a significant effect on properties related to overall bone quality, which are normally measured using tests such as micro-computed tomography (&mgr;-CT) and three point-bending to determine the structural and mechanical properties, respectively. Although Raman spectroscopy is known to non-destructively characterize biochemical properties of bone such as degree of mineralization and crystallinity, the correlation between these measurements and those of overall bone quality has not yet been systematically investigated. In this study we present a comparison of structural and mechanical properties of bone from mice deficient in matrix metalloproteinase 2 (MMP2) to compositional properties measured with RS. Femora were collected from MMP2+/+ and MMP2-/- mice at 16 weeks of age. Multiple Raman spectra were collected from the mid-diaphysis of intact femora in order to measure the bone's average compositional properties. In addition, &mgr;-CT was used to characterize the structure and bone mineral density (BMD) at the mid-diaphysis, and three-point bending assessed the biomechanical properties of the same bones. Raman derived measurements of mineralization (ratio of Phosphate ν1 to CH2 bending), mineral crystallinity, collagen and mineral contents were significantly lower in the MMP null mice and demonstrated correlation with volumetric BMD, bending strength and modulus. In addition, all these measurements were shown to inversely correlate with post-yield-deflection (p<0.01). These results indicate the potential for RS to qualitatively assess bone quality.
Both Confocal Microscopy and Raman Spectroscopy have shown potential for diagnosis and differentiation of cancerous and normal skin. Many current studies utilizing these techniques use large bench-top microscopes, and are not suited for in-vivo diagnosis in a clinical setting. We have developed a microscope which combines confocal reflectance imaging with Raman spectroscopy into a compact handheld probe, allowing images and Raman spectra to be taken in-vivo. The compact design of this handheld unit is largely due to the use of a MEMS mirror which scans the illumination laser light in two dimensions to produce the confocal reflectance image of the skin. An integrated CCD camera provides a large area view of the skin surface which helps to guide the location of the confocal reflectance image area. Using this probe, in-vivo confocal reflectance images and Raman spectra of normal skin have been obtained with axial resolutions of 4 μm for the confocal channel and 10 μm for the Raman channel. This paper presents the instrument design and optical characteristics, including representative in-vivo images and Raman data from normal skin tissue.
Real-time optical coherence tomography (OCT) was used to visualize and quantify structures in the anterior segment of the eye. Results obtained with hand-held and slit-lamp adapted OCT systems are presented. Preliminary data indicates strong potential for the use of real-time OCT in anterior segment biometry and in non-invasive assessment of normal and pathological anterior segment anatomy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.