Efficient second harmonic conversion (70 - 80%) using Type II and Type I crystals is demonstrated with 400-fs, 1.053-micrometers laser pulses at intensities up to several hundreds of GW/cm2. The experimental results generally agree with the predictions of the code MIXER. For the Type II predelay scheme, evidence is obtained of pulse shortening down to approximately 100 fs.
A review is given (intended for the non-expert) of the field of ultrashort laser pulses at ultra high intensities and their interactions with plasmas. The review covers progress and basic concepts for theory, modelling and experiments, with emphasis on the background aspects, the basic experimental considerations and some possible applications.
We present recent results of our effort to develop an efficient, user-friendly, table-top ultrafast X-ray source. The factors affecting the duration and the intensity of the X-ray emission in the keV range are studied. Time-dependent calculation of the atomic physics coupled to a Fokker- Planck code is used for a quantitative analysis of the experimental results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.