Annealings have been performed on Ge0.84Sn0.16 microstructures in order to improve their optical properties by reducing the number of defects at the origin of Sn segregation. An enhancement of the photoluminescence intensity by a factor of 2.4 for annealed microstructures compared to ones without annealing was for instance achieved. Different annealing temperatures were tested to limit Sn segregation above the epitaxy temperature.
Owing to their direct band gaps, (Si)GeSn all-group-IV alloys are promising candidates for light sources, photodetectors and modulators monolithically integrated onto a CMOS-compatible mid-infrared photonic platform. Several research teams have demonstrated optically pumped GeSn lasers, and, more recently, an electrically pumped GeSn laser at low operating temperature. Here, we studied Ge0.85Sn0.15-based light emitting diodes (LEDs) and photodiodes (PDs) operating at room temperature. The stack was grown on a p-doped Ge strain-relaxed buffer at low growth temperatures (below 350°C) in a 200 mm chemical vapor deposition tool. Fabricated GeSn devices were characterized at room temperature with a Fourier-transform infrared spectrometer (FTIR) and an InSb detector. The spectral response of the FTIR InSb detector was calibrated with respect to a Deuterated Triglycine Sulfate detector (DTGS). This spectral response was then used to correct Ge0.85Sn0.15 LEDs emission spectra with emission maximum at 3.3 μm. The cutoff wavelength at 3.7 μm of the GeSn photodiode was finally obtained (at 0V bias) after correction of the Globar incident light spectrum. Such emission and detection open up promising perspectives for all-group-IV LEDs and PDs in applications such as gas sensing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.