The spectroscopic investigation of the highly transparent rare earth (Pr3+, Nd3+, Ho3+, Er3+, Tm3+, Yb3+) doped Sc2O3
ceramics produced by the solid-state synthesis technique indicate that these materials could substitute the single crystals
in construction of solid-state lasers. These studies indicate also that the rare earth doped transparent ceramics could
extend considerably the variety and performances (new active systems, wavelength ranges or emission schemes) of these
lasers.
The information on the variety, nature and structure of the centers formed by the rare earths ions doped in the transparent laser ceramics of garnets and cubic sesquioxides, acquired from high-resolution spectroscopy and emission decay is analyzed. The quantum states (energy levels, transition probabilities) of several doping rare earth ions, their distribution at the available lattice sites, the interactions between ions, and energy transfer processes are also presented. It is inferred that from spectroscopic point of view these materials could substitute the melt-grown single crystals in construction of solid-state lasers and extend considerably their capabilities.
The high resolution and polarized spectroscopic investigation of Nd3+ in Mg-compensated strontium lanthanum aluminate Srl-xLax-yNdyMgxAl12-x019 (Nd: ASL) function on composition makes possible the elucidation of the nature of non- equivalent centers and enables the selection of composition and pumping conditions that grant the efficient quasi-three-level laser emission around 900 nm. Based on a proper selection of these conditions, 900 nm laser emission with slope efficiencies of 0.74 and 0.84 at 792 nm 4F5/2 and respectively 865 nm 4F3/2 pumping of Nd3+ is demonstrated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.