Frequency combs are an enabling technology for metrology and spectroscopic applications in fundamental and life sciences. While frequency combs in the 1 μm regime, produced from Yb-based systems have already exceeded the 100 W – level, high power coverage of the interesting mid-infrared wavelength range remains yet to be demonstrated. Tm- and Ho-doped laser systems have recently shown operation at high average power levels in the 2 μm wavelength regime. However, frequency combs in this wavelength range have not exceeded the 5 W-average power level. In this work, we present a high power frequency comb, delivered by a Tm-doped chirped-pulse amplifier with subsequent nonlinear pulse compression. With an integrated phase noise of <320 mrad, low relative intensity noise of <0.5% and an average power of 60 W at 100 MHz repetition rate (and <30 fs FWHM pulse duration), this system demonstrates high stability and broad spectral coverage at an unrivalled average power level in this wavelength regime. Therefore, this laser will enable metrology and spectroscopy with unprecedented sensitivity and acquisition time. It is our ongoing effort to extend the spectral coverage of this system through the utilization of parametric frequency conversion into the mid-IR, thus ultimately enabling high power fingerprint spectroscopy in the entire molecular fingerprint region (2 – 20 μm).
Traditionally, infrared molecular spectroscopy has been performed with frequency-domain measurement techniques. Recent experiments have exploited the outstanding temporal coherence of state-of-the-art femtosecond lasers to overcome long-standing sensitivity and dynamic range limitations of these traditional techniques, with time-domain measurements. Here, we show how state-of-the-art 2-µm femtosecond technology provides (i) Watt-level infrared sources covering the entire molecular fingerprint region, with a spectral brightness exceeding even that of synchrotrons, (ii) background-free, high-sensitivity and high-dynamic range time-domain detection of molecular vibrations via electro-optical sampling with (iii) attosecond temporal accuracy. These advances herald a new regime for time-, frequency- and space-resolved molecular vibrational metrology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.