MIRC-X and MYSTIC are six-telescope near-infrared beam (1.08-2.38μm) combiners at the CHARA Array on Mt Wilson CA, USA. Ever since the commissioning of MIRC-X (J and H bands) in 2018 and MYSTIC (K bands) in 2021, they have been the most popular and over-subscribed instruments at the array. Observers have been able to image stellar objects with sensitivity down to 8.1mag in H and 7.8mag in K-band under the very best conditions. In 2022 MYSTIC was upgraded with a new ABCD mode using the VLTI/GRAVITY 4-beam integrated optics chip, with the goal of improving the sensitivity and calibration. The ABCD mode has been used to observe more than 20T Tauri stars; however, the data pipeline is still being developed. Alongside software upgrades, we detail planned upgrades to both instruments in this paper. The main upgrades are: 1) Adding a motorized filter wheel to MIRC-X along with new high spectral resolution modes 2) Updating MIRC-X optics to allow for simultaneous 6T J+H observations 3) Removing the warm window between the spectrograph and the warm optics in MYSTIC 4) Adding a 6T ABCD mode to MIRC-X in collaboration with CHARA/SPICA 5) Updating the MIRC-X CRED-ONE camera funded by Prof. Kraus from U. Exeter 6) Carrying out science verification of the MIRC-X polarization mode 7) Developing new software for ABCD-mode data reduction and more efficient calibration routines. We expect these upgrades to not only improve the observing experience, but also increase the sensitivity by 0.4mag in J+H-bands, and 1mag in K-band.
SPICA (Stellar Parameters and Images with a Cophased Array) is a 6-telescope (6T) visible instrument for the CHARA Array (Center for High Angular Resolution in Astronomy) at Mount Wilson Observatory. It uses single mode fibers for feeding the interferometric spectrograph, which offers three different spectral resolutions: R=140, R=4000, and R=14000. CHARA/SPICA has been mainly designed for large programs (surveys) in the domain of stellar fundamental parameters but also permits fast imaging thanks to the 15 baselines and the large number of spectral channels (60 in low resolution mode). SPICA is made of the visible instrument SPICA-VIS and of a new H-band, 6T, ABCD combiner performing group delay and phase delay tracking. In this paper, we present the first light results of SPICA.
HARMONI is the first light visible and near-IR integral field spectrograph for the ELT. It covers a large spectral range from 450 nm to 2450 nm with resolving powers from 3500 to 18000 and spatial sampling from 60 mas to 4 mas. It can operate in two Adaptive Optics modes - SCAO (including a High Contrast capability) and LTAO - or with NOAO. The project is preparing for Final Design Reviews. HARMONI is a work-horse instrument that provides efficient, spatially resolved spectroscopy of extended objects or crowded fields of view. The gigantic leap in sensitivity and spatial resolution that HARMONI at the ELT will enable promises to transform the landscape in observational astrophysics in the coming decade. The project has undergone some key changes to the leadership and management structure over the last two years. We present the salient elements of the project restructuring, and modifications to the technical specifications. The instrument design is very mature in the lead up to the final design review. In this paper, we provide an overview of the instrument's capabilities, details of recent technical changes during the red flag period, and an update of sensitivities.
HARMONI is the first light, adaptive optics assisted, integral field spectrograph for the European Southern Observatory’s Extremely Large Telescope (ELT). A work-horse instrument, it provides the ELT’s diffraction limited spectroscopic capability across the near-infrared wavelength range. HARMONI will exploit the ELT’s unique combination of exquisite spatial resolution and enormous collecting area, enabling transformational science. The design of the instrument is being finalized, and the plans for assembly, integration and testing are being detailed. We present an overview of the instrument’s capabilities from a user perspective, and provide a summary of the instrument’s design. We also include recent changes to the project, both technical and programmatic, that have resulted from red-flag actions. Finally, we outline some of the simulated HARMONI observations currently being analyzed.
SPICA-FT is part of the CHARA/SPICA instrument which combines a visible 6T fibered instrument (SPICAVIS) with a H-band 6T fringe sensor. SPICA-FT is a pairwise ABCD integrated optics combiner. The chip is installed in the MIRC-X instrument. The MIRC-X spectrograph could be fed either by the classical 6T fibered combiner or by the SPICA-FT integrated optics combiner. SPICA-FT also integrates a dedicated fringe tracking software, called the opd-controller communicating with the main delay line through a dedicated channel. We present the design of the integrated optics chip, its implementation in MIRC-X and the software architecture of the group-delay and phase-delay control loops. The final integrated optics chip and the software have been fully characterized in the laboratory. First on-sky tests of the integrated optics combiner began in 2020. We continue the on-sky tests of the whole system (combiner + software) in Spring and Summer 2022. We present the main results, and we deduce the preliminary performance of SPICA-FT.
With a possible angular resolution down to 0.1-0.2 millisecond of arc using the 330 m baselines and the access to the 600-900 nm spectral domain, the CHARA Array is ideally configured for focusing on precise and accurate fundamental parameters of stars. CHARA/SPICA (Stellar Parameters and Images with a Cophased Array) aims at performing a large survey of stars all over the Hertzsprung-Russell diagram. This survey will also study the effects of the different kinds of variability and surface structure on the reliability of the extracted fundamental parameters. New surface-brightness-colour relations will be extracted from this survey, for general purposes on distance determination and the characterization of faint stars. SPICA is made of a visible 6T fibered instrument and of a near-infrared fringe sensor. In this paper, we detail the science program and the main characteristics of SPICA-VIS. We present finally the initial performance obtained during the commissioning.
HARMONI is the adaptive optics assisted, near-infrared and visible light integral field spectrograph for the Extremely Large Telescope (ELT). A first light instrument, it provides the work-horse spectroscopic capability for the ELT. As the project approaches its Final Design Review milestone, the design of the instrument is being finalized, and the plans for assembly, integration and testing are being detailed. We present an overview of the instrument’s capabilities from a user perspective, provide a summary of the instrument’s design, including plans for operations and calibrations, and provide a brief glimpse of the predicted performance for a specific observing scenario. The paper also provides some details of the consortium composition and its evolution since the project commenced in 2015.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.