The 1/f resistance noise of a two-dimensional (2D) hole system in a high mobility GaAs quantum well has been measured on both sides of the 2D metal-insulator transition (MIT) at zero magnetic field (B = 0), and deep in the insulating regime. The two measurement methods used are described: I or V fixed, and measurement of resp. Vor I fluctuations. The normalized noise magnitude SR/R2 increases strongly when the hole density is decreased, and its temperature (T) dependence goes from a slight increase with T at the largest densities, to a strong decrease at low density. We find that the noise magnitude scales with the resistance, SR/R2 ~ R2.4. Such a scaling is expected for a second order phase transition or a percolation transition. The possible presence of such a transition is investigated by studying the dependence of the conductivity as a function of the density. This dependence is consistent with a critical behavior close to a critical density p* lower than the usual MIT critical density pc.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.