As we enter this new space age where the barrier to access space has never been lower, the technologies that enable various space-based missions are being reevaluated in light of evolving requirements and constraints. For example, event-based sensors show great promise for executing tracking functions with higher timing resolution and reduced power consumption and datalink demands, a great benefit for larger sensor network architectures that may be enabled by recent reductions in launch costs. Currently, the vast majority of event-based sensors on the market are designed to operate for visible wavelength applications using silicon-based photodetectors, however, operation in the infrared is essential for many space-based sensing applications. Evaluation of how the event-based read-out integrated circuit will interact with smaller bandgap photodetectors and how typical infrared photogenerated signal levels will propagate through the event-based sensor pixel unit cell will be necessary to extend the utility of event-based sensing into the mid- to long-wavelength infrared. To evaluate the functionality of the event-based sensor pixel unit cell, the circuit is implemented on a custom-designed printed circuit board using discrete devices selected to tailor the functionality to operate a mid-wave infrared photodetector. The measurements conducted provide understanding of merits such as photoresponse, latency, and general operation of the unit cell alongside possible limitations of the unit cell.
In this presentation, we propose an effective scattering-potential approach for treating interface-roughness scattering of moving electrons in a superlattice structure. Based on obtained effective scattering potentials, we further derive a generalized Boltzmann transport equation by including a self-consistent internal scattering force. In addition, we solve this equation exactly beyond the relaxation-time approximation, and meanwhile, analyze the dependence of conduction current on interface-roughness parameters at various temperatures and DC electric fiield strengths. Finally, we reveal a microscopic mechanism associated with non-ohmic transport behavior by analyzing features in steady-state non-equilibrium electron occupation function and its dependence on interface roughness parameters.
Event-based camera (EBC) technology provides high-dynamic range operation and shows promise for efficient capture of spatio-temporal information, producing a sparse data stream and enabling consideration of nontraditional data processing solutions (e.g., new algorithms, neuromorphic processors, etc.). Given the fundamental difference in camera architecture, the EBC response and noise behavior differ considerably compared to standard CCD/CMOS framing sensors. These differences necessitate the development of new characterization techniques and sensor models to evaluate hardware performance and elucidate the trade-space between the two camera architectures. Laboratory characterization techniques reported previously include noise level as a function of static scene light level (background activity) and contrast responses referred to as S-curves. Here we present further progress on development of basic characterization methods and test capabilities for commercial-off-the-shelf (COTS) visible EBCs, with a focus on measurement of pixel deadtime (refractory period) including results for the 4th-generation sensor from Prophesee and Sony. Refractory period is empirically determined from analysis of the interspike intervals (ISIs), and results visualized using log-histograms of the minimum per-pixel ISI values for a subset of pixels activated by a controlled dynamic scene. Our tests of the Prophesee gen4 EVKv2 yield refractory period estimates ranging from 6.1 msec to 6.8 μsec going from the slowest (20) to fastest (100) settings of the relevant bias parameter, bias_refr. We also introduce and demonstrate the concept of pixel bandwidth measurement from data captured while viewing a static scene – based on recording data at a range of refractory period setting and then analyzing noise-event statistics. Finally, we present initial results for estimating and correcting EBC clock drift using a GPS PPS signal to generate special timing events in the event-list data streams generated by the DAVIS346 and DVXplorer EBCs from iniVation.
Event-based camera (EBC) technology shows promise for efficient capture of spatio-temporal information, producing a sparse data stream and enabling consideration of nontraditional data processing solutions (e.g., new algorithms, neuromorphic processors). Given the fundamental difference in camera architecture, the EBC response and noise behavior differ considerably compared to standard CCD/CMOS framing sensors. These differences necessitate development of new characterization techniques to quantify performance and assess if the EBC technology produces benefits relative to traditional imaging sensors. Here we present progress on development of basic sensor performance modeling and test capabilities for commercial-off-the-shelf visible EBCs. Laboratory characterization techniques include noise level as a function of static scene light level (termed background activity) and EBC temporal contrast response to dynamic signals. Initial environmental tests of the Prophesee PPS3MVCD event-based sensor found several addressable areas of concern but identified no showstoppers that would prevent use of this device in a high-reliability aerospace application. Two independent radiation tolerance test efforts, one for the PPS3MVCD and another for the iniVation DAVIS346 EBC (both based on 180 nm CMOS technology), indicate functional issues for total ionizing dose (TID) of greater than 30 krad(Si), and show background activity increasing with TID. However, no significant change in contrast response was observed. One DAVIS346 exhibited functional failure following final gamma radiation dose from 20 krad(Si) to 50 krad(Si), and the readout saturated during doses dominated by negative-polarity events (by a factor of 10 or greater). A second DAVIS346 locked-up during proton dose but recovered normal operation following a brief rest period and power cycling. DAVIS346 pixels include both change detection (DVS) and standard grayscale frames (APS) functionalities – driven by a single photodiode; results show a 70% increase in dark current and 23% increase in dark event noise after proton exposure to 20 krad(Si). As new versions of EBC technology are developed for infrared wavelengths, we anticipate these characterization techniques will be largely translatable to IR EBCs.
HgCdTe has been called the ideal infrared detector material for good reason: high absorption coefficients and very long Shockley-Read-Hall (SRH) recombination lifetimes lead to the highest performance infrared detectors today for space applications. III-V materials, such as InAsSb, are currently limited by short SRH recombination lifetimes due to defects, and their performance is still relatively lacking for space applications where sensitivity requirements are extremely high. However, the performance of III-V superlattice infrared detectors has improved such that it is sufficient for tactical applications, which can now take advantage of the manufacturing benefits of III-V (greater uniformity and yield). With the growing NewSpace movement, there is a need for higher-volume, lower-cost infrared detectors capable of operating in space for applications such as environmental monitoring, space-based weather, and planetary science. One way to increase volume and lower cost is to grow the detectors on large-format substrates, such as 6-inch silicon or GaAs, but lattice-matched large substrates are not available for HgCdTe or InAsSb. Here a comparison between mid-wavelength infrared HgCdTe and InAsSb infrared detectors grown on non-lattice-mismatched substrates and designed for increased proton radiation tolerance, as compared to previous designs on mismatched substrates, is given. The comparison of these recent HgCdTe photodiode and InAsSb bariode designs for space applications shows that the InAsSb bariode has an order of magnitude better dark current density proton radiation tolerance while the HgCdTe photodiode has an order of magnitude better quantum efficiency proton radiation tolerance operating at 130 K. Therefore, the choice of detector material and architecture is not clear and will depend on the required performance for a specific space application.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.