At Lawrence Berkeley National Laboratory’s Advanced Light Source, we are developing x-ray wavefront sensors to support the creation and operation of beamlines with diffraction-limited quality. Our new approach to rapid, intermittent wavefront sensing operates in reflection at glancing incidence angles and is compatible with the high-power densities of modern beamlines. For soft x-ray applications especially, the wavefront sensor can operate upstream of the exit slit in a vertically dispersed beam. This single-shot technique supports lateral shearing interferometry and Hartmann wavefront sensing; it can be adapted to speckle-based techniques as well. The reflected beam is directed to an off-axis YAG crystal that produces scintillated visible light. A small mirror reflects the light to a microscope and camera, and the measured wavefront shape information can be used as feedback to adaptive x-ray mirror elements. A compact array of gratings enables measurement across a broad range of photon energies or wavefront curvatures. We describe recent demonstrations at soft x-ray and hard x-ray wavelengths measuring an adaptive x-ray mirror, and a toroidal focusing mirror.
The upgrade of the Advanced Light Source at Lawrence Berkeley National Lab to a Diffraction-Limited Storage Ring (DLSR) will feature four new and upgraded beamlines, designed to take full advantage of the coherence and high brightness of the insertion device source operating mostly in the soft x-ray regime (100–2000 eV). The round and highly coherent beam drives specific design choices for the photon transport optics and monochromator, and technical challenges in terms of performances, optical tolerances and stability. We have used the simulation tools Shadow (for raytracing) or SRW (wavefront propagation), and their implementation in OASYS and Sirepo to refine tolerance specifications, using their scripting capabilities and new add-ons to perform a comprehensive beamline analysis and confirm that specifications matched our performance requirements, taking into account partial coherence and issues related to heatload.
In this paper we provide an update on the development of a novel cantilevered-liquid-nitrogen-cooled-silicon mirror for a new insertion device beamline included in the Advanced Light Source Upgrade (ALS-U). The goals of this mirror development are to achieve diffraction limited performance, demonstrate reliability, minimize coolant flow induced vibration, and demonstrate carbon contamination prevention and cleaning techniques. In this paper we summarize the design requirements, the design of the mirror system, and prototype fabrication.
An ongoing collaboration among four US Department of Energy (DOE) National Laboratories has demonstrated key technology prototypes and software modeling tools required for new high-coherent flux beamline optical systems. New free electron laser (FEL) and diffraction-limited storage ring (DLSR) light sources demand wavefront preservation from source to sample to achieve and maintain optimal performance. Fine wavefront control was achieved using a novel, roomtemperature cooled mirror system called REAL (resistive element adjustable length) that combines cooling with applied, spatially variable auxiliary heating. Single-grating shearing interferometry (also called Talbot interferometry) and Hartmann wavefront sensors were developed and used for optical characterization and alignment on several beamlines, across a range of photon energies. Demonstrations of non-invasive hard x-ray wavefront sensing were performed using a thin diamond single-crystal as a beamsplitter.
We describe design guidelines for soft x-ray wavefront sensors and experimentally demonstrate their performance, comparing grating-based lateral shearing interferometry and Hartmann wavefront sensing. We created a compact shearing interferometer concept with a dense array of binary amplitude gratings in a single membrane to support one-dimensional wavefront measurements across a wide wavelength range without the need for longitudinal position adjustment. We find that a common scaling parameter based on wavelength and the distance to the measurement plane guides the design of both systems toward optimal sensitivity. We show preliminary results from recent experiments demonstrating one and two-dimensional wavefront sensing below the Marechal criterion.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.