Fatemeh Ostadhossein, Parikshit Moitra, Maha Alafeef, Dinabandhu Sar, Shannon D’Souza, Lily Benig, Michael Nelappana, Xuedong Huang, Julio Soares, Kai Zhang, Dipanjan Pan
SignificanceCarbon dots (CDs) have attracted a host of research interest in recent years mainly due to their unique photoluminescence (PL) properties that make them applicable in various biomedical areas, such as imaging and image-guided therapy. However, the real mechanism underneath the PL is a subject of wide controversy and can be investigated from various angles.AimOur work investigates the effect of the isomeric nitrogen position as the precursor in the synthesis of CDs by shedding light on their photophysical properties on the single particles and ensemble level.ApproachTo this end, we adopted five isomers of diaminopyridine (DAP) and urea as the precursors and obtained CDs during a hydrothermal process. The various photophysical properties were further investigated in depth by mass spectroscopy. CD molecular frontier orbital analyses aided us in justifying the fluorescence emission profile on the bulk level as well as the charge transfer processes. As a result of the varying fluorescent responses, we indicate that these particles can be utilized for machine learning (ML)-driven sensitive detection of oral microbiota. The sensing results were further supported by density functional theoretical calculations and docking studies.ResultsThe generating isomers have a significant effect on the overall photophysical properties at the bulk/ensembled level. On the single-particle level, although some of the photophysical properties such as average intensity remained the same, the overall differences in brightness, photo-blinking frequency, and bleaching time between the five samples were conceived. The various photophysical properties could be explained based on the different chromophores formed during the synthesis. Overall, an array of CDs was demonstrated herein to achieve ∼100 % separation efficacy in segregating a mixed oral microbiome culture in a rapid (<0.5 h), high-throughput manner with superior accuracy.ConclusionsWe have indicated that the PL properties of CDs can be regulated by the precursors’ isomeric position of nitrogen. We emancipated this difference in a rapid method relying on ML algorithms to segregate the dental bacterial species as biosensors.
Photoacoustic (PA) tomography imaging is an emerging, versatile, and noninvasive imaging modality, which combines the advantages of both optical imaging and ultrasound imaging. It opens up opportunities for noninvasive imaging of angiogenesis, a feature of skin pathologies including cancers and psoriasis. In this study, high-density copper oleate encapsulated within a phospholipid surfactant (CuNPs) generated a soft nanoparticle with PA contrast comparable to gold. Within the near-infrared window, the copper nanoparticles can provide a signal more than 7 times higher that of blood. ανβ3-targeted of CuNPs in a Matrigel mouse model demonstrated prominent PA contrast enhancement of the neovasculature compared to mice given nontargeted or competitively inhibited CuNPs. Incorporation of a sn-2 lipase-labile fumagillin prodrug into the CuNPs produced marked antiangiogenesis in the same model, demonstrating the theranostic potential of a PA agent for the first time in vivo. With a PA signal comparable to gold-based nanoparticles yet a lower cost and demonstrated drug delivery potential, ανβ3-targeted CuNPs hold great promise for the management of skin pathologies with neovascular features.
We demonstrated the potential of carbon nanoparticles (CNPs) as exogenous contrast agents for both thermoacoustic
(TA) tomography (TAT) and photoacoustic (PA) tomography (PAT). In comparison to deionized water, the CNPs
provided a four times stronger signal in TAT at 3 GHz. In comparison to blood, The CNPs provided a much stronger
signal in PAT over a broad wavelength range of 450-850 nm. Specifically, the maximum signal enhancement in PAT
was 9.4 times stronger in the near-infrared window of 635-670 nm. In vivo blood-vessel PA imaging was performed
non-invasively on a mouse femoral area. The images, captured after the tail vein injection of CNPs, show a gradual
enhancement of the optical absorption in the vessels by up to 230%. The results indicate that CNPs can be potentially
used as contrast agents for TAT and PAT to monitor the intravascular or extravascular pathways in clinical applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.