To determine the methane emission intensities (EIs) in St. Petersburg and its suburbs measurements of the methane (CH4) mole fraction and total column were used, the analysis of which was carried out using the mass balance method. For the suburban territory the value of EIs was estimated from the events of nocturnal accumulation which were detected using continuous CH4 mole fraction measurements at the atmospheric monitoring station of Saint Petersburg State University (SPbU) located in Peterhof. It was obtained that EI values for 2014-2015 for St. Petersburg suburbs were of (44±27) t/(km2 ∙year). The determination of EI for the St. Petersburg territory including the area of the city center was carried out using two approaches: first, using local CH4 concentrations monitored at SPbU and Voeikov MGO stations, and second, using the results of an observational campaign in March-April 2019 jointly organized by Saint Petersburg State University, Karlsruhe Institute of Technology, the University of Bremen. EI values for the city center derived using the first approach - 120±80 t/(km2 ∙year), according to the approach based on results of observational campaign - 141±78 t/(km2 ∙year).
We describe a concept of a satellite imaging spectrometer dedicated for monitoring of the Earth atmosphere operating in the visible and near ultraviolet spectral range. The instrument targets measurements of total ozone as well as other gases (nitrogen dioxide, oxygen and its dimer etc). The instantaneous field of view (IFOV) across track reaches 100° allowing to obtain global daily maps of trace gases content when operating from a typical orbit. The optical concept and design of the instrument, which consists of the entrance unit, two spectrometric channels (for two wavelength ranges) and the calibration unit are described. We also discuss the results of the optical modeling, confirming the proposed characteristics: the spectral resolution of 0.3 nm for the range 300 – 400 nm and 0.5 nm for the range 400 – 800 nm. The angular resolution is ~ 0.5° in both channels that corresponds to ~6×6 km area on the Earth surface for nadir direction from a 700-km orbit.
Emissions values, as well as emission ratios for greenhouse and reactive gases were evaluated for anthropogenic sources and wildfires. Our study is based on ground-based Fourier transform infrared measurements of CO, HCN, C2H6, H2CO, OCS and CH4 total columns, zenith-sky DOAS measurements of tropospheric column of NO2 and results of the local monitoring of CH4, CO2 and CO concentrations performed at the St. Petersburg site during 2013-2016. In addition, we involve into analysis the following data and information: satellite observations of the tropospheric column of NO2 (OMI), aerosol optical thickness (MODIS) and ultraviolet aerosol index (OMI, OMPS); information on location and intensity of wildfires; AERONET data on aerosol optical thickness; results of trajectory and dispersion simulations using HYSPLIT model.
We describe a concept of a satellite imaging spectrometer dedicated for monitoring of the Earth atmosphere operating in the visible and near ultraviolet spectral range. The instrument targets measurements of total ozone as well as other gases (nitrogen dioxide, oxygen and its dimer etc). The instantaneous field of view (IFOV) across track reaches 100° allowing to obtain global daily maps of trace gases content when operating from a typical orbit. The optical concept and design of the instrument, which consists of the entrance unit, two spectrometric channels (for two wavelength ranges) and the calibration unit are described. We also discuss the results of the optical modeling, confirming the proposed characteristics: the spectral resolution of 0.3 nm for the range 300 – 400 nm and 0.5 nm for the range 400 – 800 nm. The angular resolution is ~ 0.5° in both channels that corresponds to ~6×6 km area on the Earth surface for nadir direction from a 700-km orbit.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.