Purpose: Robust and accurate segmentation methods for the intracochlear anatomy (ICA) are a critical step in the image-guided cochlear implant programming process. We have proposed an active shape model (ASM)-based method and a deep learning (DL)-based method for this task, and we have observed that the DL method tends to be more accurate than the ASM method while the ASM method tends to be more robust.
Approach: We propose a DL-based U-Net-like architecture that incorporates ASM segmentation into the network. A quantitative analysis is performed on a dataset that consists of 11 cochlea specimens for which a segmentation ground truth is available. To qualitatively evaluate the robustness of the method, an experienced expert is asked to visually inspect and grade the segmentation results on a clinical dataset made of 138 image volumes acquired with conventional CT scanners and of 39 image volumes acquired with cone beam CT (CBCT) scanners. Finally, we compare training the network (1) first with the ASM results, and then fine-tuning it with the ground truth segmentation and (2) directly with the specimens with ground truth segmentation.
Results: Quantitative and qualitative results show that the proposed method increases substantially the robustness of the DL method while having only a minor detrimental effect (though not significant) on its accuracy. Expert evaluation of the clinical dataset shows that by incorporating the ASM segmentation into the DL network, the proportion of good segmentation cases increases from 60/177 to 119/177 when training only with the specimens and increases from 129/177 to 151/177 when pretraining with the ASM results.
Conclusions: A hybrid ASM and DL-based segmentation method is proposed to segment the ICA in CT and CBCT images. Our results show that combining DL and ASM methods leads to a solution that is both robust and accurate.
Cochlear implants (CIs) are neuroprosthetic devices that can improve hearing in patients with severe-to-profound hearing loss. Postoperatively, a CI device needs to be programmed by an audiologist to determine parameter settings that lead to the best outcomes. Recently, our group has developed an image-guided cochlear implant programming (IGCIP) system to simplify the traditionally tedious post-programming procedure and improve hearing outcomes. IGCIP requires image processing techniques to analyze the location of inserted electrode arrays (EAs) with respect to the intra-cochlear anatomy (ICA), and robust and accurate segmentation methods for the ICA are a critical step in the process. We have proposed active shape model (ASM)-based method and deep learning (DL)-based method for this task, and we have observed that DL methods tend to be more accurate than ASM methods while ASM methods tend to be more robust. In this work, we propose a U-Net-like architecture that incorporates ASM segmentation into the network so that it can refine the provided ASM segmentation based on the CT intensity image. Results we have obtained show that the proposed method can achieve the same segmentation accuracy as that of the DL-based method and the same robustness as that of the ASM-based method.
Cochlear implants (CIs) use electrode arrays that are surgically inserted into the cochlea to treat patients with hearing loss. For CI recipients, sound bypasses the natural transduction mechanism and directly stimulates the neural regions, thus creating a sense of hearing. Post-operatively, CIs need to be programmed. Traditionally, this is done by an audiologist who is blind to the positions of the electrodes relative to the cochlea and only relies on the subjective response of the patient. Multiple programming sessions are usually needed, which can take a frustratingly long time. We have developed an imageguided cochlear implant programming (IGCIP) system to facilitate the process. In IGCIP, we segment the intra-cochlear anatomy and localize the electrode arrays in the patient’s head CT image. By utilizing their spatial relationship, we can suggest programming settings that can significantly improve hearing outcomes. To segment the intra-cochlear anatomy, we use an active shape model (ASM)-based method. Though it produces satisfactory results in most cases, sub-optimal segmentation still happens. As an alternative, herein we explore using a deep learning method to perform the segmentation task. Large image sets with accurate ground truth (in our case manual delineation) are typically needed to train a deep learning model for segmentation but such a dataset does not exist for our application. To tackle this problem, we use segmentations generated by the ASM-based method to pre-train the model and fine-tune it on a small image set for which accurate manual delineation is available. Using this method, we achieve better results than the ASM-based method.
Cholesteatomas are benign lesions that form in the middle ear (ME). They can cause debilitating side effects including hearing loss, recurrent ear infection and drainage, and balance disruption. The current approach for positively identifying cholesteatomas requires intraoperative visualization either by lifting the ear drum or transmitting an endoscope through the ear canal and tympanic membrane – procedures which are typically done in and operating room with the patient under general anesthesia. We are developing a novel endoscope that can be inserted trans-nasally and could potentially be used in an outpatient setting allowing clinicians to easily detect and visualize cholesteatomas and other middle ear conditions. A crucial part of designing this device is determining the degrees of freedom necessary to visualize the regions of interest in the middle ear space. To permit virtual evaluation of scope design, in this work we propose to create a library of models of the most difficult to visualize region of the middle ear, the retrotympanum (RT), which is located deep and posterior to the tympanic membrane. We have designed a semi-automated atlas-based approach for segmentation of the RT. Our approach required 2-3 minutes of manual interaction for each of 20 cases tested. Each result was verified to be accurate by an experienced otologist. These results show the method is efficient and accurate enough to be applied to a large scale dataset. We also created a statistical shape model from the resulting segmentations that can be used to synthesize new plausible RT shapes for comprehensive virtual evaluation of endoscope designs and show that it can represent new RT shapes with average errors of 0.5 mm.
Cochlear implants (CIs) use electrode arrays that are surgically inserted into the cochlea to stimulate nerve endings to replace the natural electro-mechanical transduction mechanism and restore hearing for patients with profound hearing loss. Post-operatively, the CI needs to be programmed. Traditionally, this is done by an audiologist who is blind to the positions of the electrodes relative to the cochlea and relies on the patient’s subjective response to stimuli. This is a trial-and-error process that can be frustratingly long (dozens of programming sessions are not unusual). To assist audiologists, we have proposed what we call IGCIP for image-guided cochlear implant programming. In IGCIP, we use image processing algorithms to segment the intra-cochlear anatomy in pre-operative CT images and to localize the electrode arrays in post-operative CTs. We have shown that programming strategies informed by image-derived information significantly improve hearing outcomes for both adults and pediatric populations. We are now aiming at deploying these techniques clinically, which requires full automation. One challenge we face is the lack of standard image acquisition protocols. The content of the image volumes we need to process thus varies greatly and visual inspection and labelling is currently required to initialize processing pipelines. In this work we propose a deep learning-based approach to automatically detect if a head CT volume contains two ears, one ear, or no ear. Our approach has been tested on a data set that contains over 2,000 CT volumes from 153 patients and we achieve an overall 95.97% classification accuracy.
In the development of treatments for cardiovascular diseases, short axis cardiac cine MRI is important for the assessment of various structural and functional properties of the heart. In short axis cardiac cine MRI, Cardiac properties including the ventricle dimensions, stroke volume, and ejection fraction can be extracted based on accurate segmentation of the left ventricle (LV) myocardium. One of the most advanced segmentation methods is based on fully convolutional neural networks (FCN) and can be successfully used to do segmentation in cardiac cine MRI slices. However, the temporal dependency between slices acquired at neighboring time points is not used. Here, based on our previously proposed FCN structure, we proposed a new algorithm to segment LV myocardium in porcine short axis cardiac cine MRI by incorporating convolutional long short-term memory (Conv-LSTM) to leverage the temporal dependency. In this approach, instead of processing each slice independently in a conventional CNN-based approach, the Conv-LSTM architecture captures the dynamics of cardiac motion over time. In a leave-one-out experiment on 8 porcine specimens (3,600 slices), the proposed approach was shown to be promising by achieving average mean Dice similarity coefficient (DSC) of 0.84, Hausdorff distance (HD) of 6.35 mm, and average perpendicular distance (APD) of 1.09 mm when compared with manual segmentations, which improved the performance of our previous FCN-based approach (average mean DSC=0.84, HD=6.78 mm, and APD=1.11 mm). Qualitatively, our model showed robustness against low image quality and complications in the surrounding anatomy due to its ability to capture the dynamics of cardiac motion.
Cochlear implants (CIs) are neural prostheses that restore hearing using an electrode array implanted in the cochlea. After implantation, the CI processor is programmed by an audiologist. One factor that negatively impacts outcomes and can be addressed by programming is cross-electrode neural stimulation overlap (NSO). We have proposed a system to assist the audiologist in programming the CI that we call image-guided CI programming (IGCIP). IGCIP permits using CT images to detect NSO and recommend deactivation of a subset of electrodes to avoid NSO. We have shown that IGCIP significantly improves hearing outcomes. Most of the IGCIP steps are robustly automated but electrode configuration selection still sometimes requires manual intervention. With expertise, distance-versus-frequency curves, which are a way to visualize the spatial relationship learned from CT between the electrodes and the nerves they stimulate, can be used to select the electrode configuration. We propose an automated technique for electrode configuration selection. A comparison between this approach and one we have previously proposed shows that our method produces results that are as good as those obtained with our previous method while being generic and requiring fewer parameters.
Cochlear implants (CIs) use electrode arrays that are surgically inserted into the cochlea to stimulate frequency-mapped nerve endings to treat patients with hearing loss. CIs are programmed postoperatively by audiologists using behavioral tests without information on electrode–cochlea spatial relationship. We have recently developed techniques to segment the intracochlear anatomy and to localize individual contacts in clinically acquired computed tomography (CT) images. Using this information, we have proposed a programming strategy that we call image-guided CI programming (IGCIP), and we have shown that it significantly improves outcomes for both adult and pediatric recipients. One obstacle to large-scale deployment of this technique is the need for manual intervention in some processing steps. One of these is the rough registration of images prior to the use of automated intensity-based algorithms. Although seemingly simple, the heterogeneity of our image set makes this task challenging. We propose a solution that relies on the automated random forest-based localization of multiple landmarks used to estimate an initial transformation with a point-based registration method. Results show that it produces results that are equivalent to a manual initialization. This work is an important step toward the full automation of IGCIP.
Cochlear implants (CIs) are used to treat patients with severe-to-profound hearing loss. In surgery, an electrode array is implanted in the cochlea. After implantation, the CI processor is programmed by an audiologist. One factor that negatively impacts outcomes and can be addressed by programming is cross-electrode neural stimulation overlap (NSO). In the recent past, we have proposed a system to assist the audiologist in programming the CI that we call Image-Guided CI Programming (IGCIP). IGCIP permits using CT images to detect NSO and recommend which subset of electrodes should be active to avoid NSO. In an ongoing clinical study, we have shown that IGCIP leads to significant improvement in hearing outcomes. Most of the IGCIP steps are robustly automated but electrode configuration selection still sometimes requires expert intervention. With expertise, Distance-Vs-Frequency (DVF) curves, which are a way to visualize the spatial relationship learned from CT between the electrodes and the nerves they stimulate, can be used to select the electrode configuration. In this work, we propose an automated technique for electrode configuration selection. It relies on matching new patients’ DVF curves to a library of DVF curves for which electrode configurations are known. We compare this approach to one we have previously proposed. We show that, generally, our new method produces results that are as good as those obtained with our previous one while being generic and requiring fewer parameters.
Cochlear Implants (CIs) are electrode arrays that are surgically inserted into the cochlea. Individual contacts stimulate frequency-mapped nerve endings thus replacing the natural electro-mechanical transduction mechanism. CIs are programmed post-operatively by audiologists but this is currently done using behavioral tests without imaging information that permits relating electrode position to inner ear anatomy. We have recently developed a series of image processing steps that permit the segmentation of the inner ear anatomy and the localization of individual contacts. We have proposed a new programming strategy that uses this information and we have shown in a study with 68 participants that 78% of long term recipients preferred the programming parameters determined with this new strategy. A limiting factor to the large scale evaluation and deployment of our technique is the amount of user interaction still required in some of the steps used in our sequence of image processing algorithms. One such step is the rough registration of an atlas to target volumes prior to the use of automated intensity-based algorithms when the target volumes have very different fields of view and orientations. In this paper we propose a solution to this problem. It relies on a random forest-based approach to automatically localize a series of landmarks. Our results obtained from 83 images with 132 registration tasks show that automatic initialization of an intensity-based algorithm proves to be a reliable technique to replace the manual step.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.