This paper investigates the feasibility of using micro-optical resonators to develop a force sensor which can be embedded within a material to create members with inherent damage sensing capabilities. The optical resonator is comprised of a polymeric material and has a circular cross section with a diameter ranging from tens to hundreds of micrometers. When light is brought inside the resonator, it starts to travel along the internal surface through total internal reflection, exciting optical resonances, also known as Whispering Gallery Modes (WGMs). Any change in the morphology of the resonator determines a shift of the WGMs in the transmission spectrum. Being the optical resonances extremely narrow, a high optical quality factor is obtained, which in turn, produces a resonator that is very sensitive to external effects that determine small changes in the morphology of the resonator. By embedding the resonator in a polymeric slab, and applying external loading, the encased nature of the sensor results in the resonator deforming along with the slab. The resulting shifts can then be measured and used to calibrate instruments to determine various forces that act on a given structure. Finite element analysis simulations were conducted using a cantilever polymeric beam with Young's modulus of 1.06 MPa with a concentrated tip load varying from 0.001 N to 0.1 N. Results of these simulations showed a linear relationship between the applied load and the WGM shift resulting in a sensitivity ranging from 0.2044 N-1 to 2.016 N-1.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.