Epilepsy is surgically curable if the seizure focus can be localized and does not include areas of eloquent cortex. Because epileptic cells are indistinct from surrounding brain, resection typically includes normal tissue. Using the rat kindling model of epilepsy, we evaluated Photodynamic Therapy (PDT) as a super-selective lesioning technique. We present a series of pilot studies to evaluate: 1) Protoporphyrin IX (PpIX) fluorescence, 2) the efficacy of PDT to raise seizure thresholds, 3) the safety of PDT using behavioral studies, and 4) histologic results. Bipolar electrodes were chronically implanted into the cortex and animals received successive low-level stimulation generating seizures of increasing severity. Following 5-aminolevulinic acid (ALA) administration, fully kindled rats received electrical stimulation to induce a generalized seizure. Animals were irradiated with laser light focused onto a temporal craniectomy. Our results show: 1) an increase in PpIX fluorescence in the seizure group, 2) PDT treated animals failed to demonstrate seizure activity following repeat stimulation, 3) no statistically significant difference between treated and control animals were
observed on behavioral tests, 4) histology showed pyknotic hippocampal pyramidal cells in the CA3 region without areas of obvious necrosis. In conclusion, this is the first report of heightened PpIX-mediated fluorescence in epileptic brain. The selective accumulation of PpIX with laser PDT may provide a less invasive and more precise technique for obliteration of epileptic foci. PDT warrants additional research to determine if this technique may augment or replace existing procedures for the surgical management of epilepsy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.