We report novel phonon-polariton states induced by spatial defects in topological metasurface integrated with hexagonal boron nitride (hBN). The introduction of topological defects, created by stitching domains with different choices of unit cells leads to the emergence of spatially localized modes, while the coupling of these trapped modes with phonons in hBN gives rise to the formation of polaritonic states. We designed and fabricated a mid-IR-operating hybrid system that consists of a photonic metasurface with a thin layer of hBN on top of it. Topological defect modes of the fabricated structure were probed using direct imaging in both real- and Fourier-space.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.