Scattering of an arbitrarily focused electromagnetic Gaussian beam by a cluster consisting of a chain of axisymmetric microparticles is presented. The illustrated technique in this work combines the plane-waves spectrum method and a modification of the cluster T-matrix method. This combination provides a powerful tool to calculate the scattered fields from a cluster of different shaped particles illuminated with an arbitrarily incident electromagnetic wave. The presented technique is used to calculate the scattering matrix elements of different cases of a cluster illuminated with different beam focusing.
Computed results for some linear optical problems relevant to nonlinear optics in droplets are presented and discussed. (1) The electric energy density distributions inside homogeneous spheres (water droplets) illuminated with plane waves are computed using Lorentz-Mie theory and geometrical optics ray tracing. (2) The electric energy densities inside spheres illuminated by Gaussian beams are computed using an angular spectrum of plane waves approach, a technique applicable to scattering of Gaussian beams by axisymmetric objects. (3) The Q's and resonance locations of spherically symmetric, radially-inhomogeneous spheres are computed numerically. (4) The Q's and resonance locations of perturbed, homogeneous, droplets are computed using the T-matrix method. (5) The Q's and resonance locations of inhomogeneous, spherically-asymmetric droplets are computed using the T-matrix method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.