Down syndrome is one of the most common genetic disorders caused by chromosome abnormalities in humans. Among other physical characteristics, certain facial features are typically associated in people with Down syndrome. We investigate the problem of Down syndrome detection from a collection of face images. As the main contribution, a compact geometric descriptor is used to extract facial features from the images. Experiments are conducted on an available dataset to demonstrate the performance of the proposed methodology.
KEYWORDS: Medical imaging, Clouds, Social networks, Databases, Technologies and applications, Imaging informatics, Visualization, 3D modeling, 3D image processing, Curium, Medical research, Information security
Computer-aided diagnosis systems using medical images and three-dimensional models as input data have greatly expanded and developed, but in terms of building suitable image databases to assess them, the challenge remains. Although there are some image databases available for this purpose, they are generally limited to certain types of exams or contain a limited number of medical cases. The objective of this work is to present the concepts and the development of a collaborative platform for sharing medical images and three-dimensional models, providing a resource to share and increase the number of images available for researchers. The collaborative cloud platform, called CATALYZER, aims to increase the availability and sharing of graphic objects, including 3D images, and their reports that are essential for research related to medical images. A survey conducted with researchers and health professionals indicated that this could be an innovative approach in the creation of medical image databases, providing a wider variety of cases together with a considerable amount of shared information among its users.
Content-based image retrieval (CBIR) aims at retrieving from a database objects that are similar to an object provided by a query, by taking into consideration a set of extracted features. While CBIR has been widely applied in the two-dimensional image domain, the retrieval of3D objects from medical image datasets using CBIR remains to be explored. In this context, the development of descriptors that can capture information specific to organs or structures is desirable. In this work, we focus on the retrieval of two anatomical structures commonly imaged by Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) techniques, the left ventricle of the heart and blood vessels. Towards this aim, we developed the Area-Distance Local Descriptor (ADLD), a novel 3D local shape descriptor that employs mesh geometry information, namely facet area and distance from centroid to surface, to identify shape changes. Because ADLD only considers surface meshes extracted from volumetric medical images, it substantially diminishes the amount of data to be analyzed. A 90% precision rate was obtained when retrieving both convex (left ventricle) and non-convex structures (blood vessels), allowing for detection of abnormalities associated with changes in shape. Thus, ADLD has the potential to aid in the diagnosis of a wide range of vascular and cardiac diseases.
This work presents a classifier for mammographic masses using the wavelet transform as characteristics generator. It considers the BI-RADS classification, dividing mass according to their shapes: circulate, nodular and speculate. We developed procedures with two steps: the first involves a model applying one wavelet technique performing the contours analysis with simulated mass images. This procedure was used to choose the best wavelet that could generate the desired characteristics. The second procedure had the objective of applying the chosen wavelet to masses from segmented images. Both methods have as answers three classes of shape. A root-mean-square function is applied to obtain the energy measure for each level of wavelet decomposition. Thus the shape feature vectors are formed with the coefficients of the details and coefficients of approximation extracted by the energy of wavelet decomposition levels. Linear Discriminan Analysis (LDA) by using Fischer Discriminant was used to reduce the number of characteristics for the feature vector. The Mahalanobis distance was used by the classifier to verify aimed the pertinence of the images for each one the previously given classes. To test actual images, the leave-one-out method was used to the classifier training. The classifier has registered good results, compared to others reports in the corresponding literature.
Dense breasts, that usually are characteristic of women less than 40 years old, difficult many times early detection of breast cancer. In this work we present the application of some image processing techniques intended to enhance the contrast in dense breast images, regarding the detection of clustered microcalcifications. The procedure was, firstly, determining in the literature the main techniques used for mammographic images contrast enhancement. The results indicate that, in general: (1) as expected, the overall performance of the CAD scheme for clusters detection decreased when applied exclusively to dense breast images, compared to the application to a set of images without this characteristic; (2) most of the techniques for contrast enhancement used successfully in generic mammography images databases are not able to enhance structures of athirst in databases formed only by dense breasts images, due to the very poor contrast between microcalcifications, for example, and other tissues. These features should stress, therefore, the need of developing a methodology specifically for this type of images in order to provide better conditions to the detection of breast suspicious structures in these group of women.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.