Silicon-photonic 2×2 electro-optical switching elements and modulators based on the carrier depletion mechanism using both dual-resonator and MZI layout configurations have been developed. The passive photonic structures were developed and optimized using a fast design-fabrication-characterization cycle. The main objective is to deliver smallfootprint, low-loss and low-energy silicon photonic electro-optical switching elements and modulators equipped with standard input-output grating couplers and radio-frequency electrical contact tips to allow their characterization in highspeed probe-station setups. The insertion losses, crosstalk, power consumption and BER performance will be addressed for each electro-optical structure. The fabrication steps, including low loss waveguide patterning, pn junction and low resistive ohmic contact formation have been optimized to produce high performance devices with relaxed fabrication tolerances, employing both optical and electron-beam lithography.
Silicon photonics have generated an increasing interest in the recent year, mainly for optical
telecommunications or for optical interconnects in microelectronic circuits. The rationale of silicon photonics
is the reduction of the cost of photonic systems through the integration of photonic components and an IC on a common chip, or in the longer term, the enhancement of IC performance with the introduction of optics inside
a high performance chip.
In order to build a Opto-Electronic Integrated circuit (OEIC), a large European project HELIOS has been
launched two years ago. The objective is to combine a photonic layer with a CMOS circuit by different
innovative means, using microelectronics fabrication processes. High performance generic building blocks
that can be used for a broad range of applications are developed such as WDM sources by III-V/Si
heterogeneous integration, fast Si modulators and Ge or InGaAs detectors, Si passive circuits and specific
packaging. Different scenari for integrating photonic with an electronic chip and the recent advances on the
building blocks of the Helios project are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.