Surface Plasmon Resonance (SPR) in metallic nanostructures is an optical effect that can be exploited for the detection of small molecules. There is a broad range of metallic nanostructures supporting different SPR modes, and nanostructures can be even geometrically combined leading to the creation of new hybridised SPR modes. In our study, we investigated the properties of a hybridised SPR mode (gap modes GM) created by the placement of metallic nanoparticles onto metallic layers and its use as a sensitive sensor. A tunneling current passing through a metal-insulator-semiconductor structure can generate supported SPR modes that can be scattered through GM, which was experimentally confirmed. Moreover, we were able to experimentally follow the degradation of anisotropic (silver nanoprism) nanoparticles under ambient conditions in real time. Using atomic force microscopy and optical spectroscopy we observed an anisotropic corrosion that is starting from the tips of the nanoparticles.
Plasmonic nanostructures promise to provide sensing capabilities with the potential for sensitive and robust assays in a high parallelization. We present here the use of individual nanostructures for the detection and manipulation of biomolecules such as DNA based on optical approaches [1]. The change in localized surface plasmon resonance of individual metal nanoparticles is utilized to monitor the binding of DNA directly or via DNA-DNA interaction. The influence of different size (length) as well as position (distance to the particle surface) is thereby studied [2]. Holes in a Cr layer present another interesting approach for bioanalytics. They are used to detect plasmonic nanoparticles as labels or to sense the binding of DNA on these particles. This hybrid system of hole and particle allows for simple (just using RGB-signals of a CCD [3]) but a highly sensitive (one nanoparticle sensitivity) detection. On the other hand, the binding of molecular layers around the particles can be detected using spectroscopic features of just an individual one of these systems. Besides sensing, individual plasmonic nanostructures can be also used to manipulate single biomolecular structures such as DNA. Attached particles can be used for local destruction [4] or cutting as well as coupling of energy into (and guiding along) the molecular structure [5].
Noble metal nanoparticles interacting with electromagnetic waves exhibit the effect of localized surface plasmon resonance (LSPR) based on the collective oscillation of their conduction electrons. Local refractive index changes by a (bio) molecular layer surrounding the nanoparticle are important for a variety of research areas like optics and life sciences. In this work we demonstrate the potential of two applications in the field of molecular plasmonics, single nanoparticle sensors and nanoantennas, situated between plasmonics effects and the molecular world.
Nanowire composites are considered as a challenge in designing and making a negative index materials. By controlling the distance between parallel nanowires the electric and magnetic resonances of this structure are forced to spectrally coincide. Measurements of amplitude and phase of fabricated samples are provided together with theoretical results.
Manipulation of material by optical means represents an emerging field with numerous applications. Especially in biology and medicine, the flexible and powerful potential of laser utilization holds great promises. For many applications, the resolution of the induced effects is essential. Besides focusing of the beam by various means, the use of sub-wavelengths nanoantenna could overcome this problem. The optical absorption of certain nanostructures is based on plasmon effects. We present studies of the use of metal (homogeneous gold or gold/silver core/shell systems) nanoparticles as antennas that convert the incident laser light into irreversible destructive effects. Based on the established field of DNA-conjugated nanoparticles, we investigated the sequence-specific attachment of DNA-nanoparticle complexes onto DNA with complementary sequences, in the state of double-stranded either isolated or metaphase chromosomal DNA. Important points were the adjustment of the absorption properties of the nanoparticles by control of their material composition (e.g., by addition of a silver layer to a gold core) and diameter. Another group of experiments studied chromosome-conjugated particles before and after laser treatment, in order to reveal the lateral extension of damages as well as the underlying mechanism.
Nanowire composites are considered as a challenge in design and making of left-handed materials. We established several arrangements on silica glass substrate and show transmission measurements on fields of single nanowires. The results can be interpreted in such a way that the incident electromagnetic wave effectively couple to plasmon modes and lead to negative dielectric permittivity in a particular infrared spectrum. These effects depend on the structure, the topological and geometrical properties of the nanowires and their orientation relative to the wave. Transmission measurements with fields of parallel pairs of nanowires on both sides of the isolating show results that can be well interpreted as negative magnetic permeability and negative dielectric permittivity in the infrared spectra. This arrangement of nanowire pairs can act as a so- called left-handed metamaterial with a negative index of refraction in the infrared and visible spectral ranges.
Metal nanoparticles represent an interesting tool for bioanalytics. Due to their small size, attachment to biomolecules does not interfere significantly with specific molecular binding. Therefore particles can be applied as label in affinity assays (e.g., DNA hybridization), using setups with high parallelization. Beside this rather passive use of nanoparticles, these structures can also be utilized as 'nano antenna' for the conversion of laser light pulses into heat. Using DNA-modified particles sequence-specific bound to DNA, a novel restriction technique is in development that applies this conversion for local DNA destruction. Metal nanoparticles combine the ability for highly precise positioning (due to specific molecular binding) with the possibility of optical access in a bright-field mode. They exhibit an interesting potential for spanning the gap between the macroscopic technical environment and the molecular scale, thereby enabling a true integration of nanoscale constructs with today’s technology.
DNA restriction is a basic method in today’s molecular biology. Besides application for DNA manipulation, this method is used in DNA analytics for 'restriction analysis'. Thereby DNA is digested by sequence specific restriction enzymes, and the length distribution of the resulting fragments is detected by gel electrophoresis. Differences in the sequence lead to different restriction patterns. A disadvantage of this standard method is the limitation to a small set of fixed sequences, so that the assay can not be adapted to any sequence of interest (e.g. SNP). We designed a scheme for DNA restriction in order to provide access to any desired sequence, based on laser light conversion on sequence-specific positioned metal nanoparticles. Especially gold nanoparticles are known for their interesting optical properties caused by plasmon resonance. The resulting absorption can be used to convert laser light pulses into heat, resulting in nanoparticle destruction. We work on the combination of this principle with DNA-modification of nanoparticles and the sequence-specific binding (hybridization) of these DNA-nanoparticle complexes along DNA molecules. Different mechanisms of light-conversion were studied, and the destructive effect of laser light on the nanoparticles and DNA is demonstrated.
Sequence specific cutting of DNA is a standard method in molecular biology. This cutting is realized with enzymes which have a defined recognition sequence and cutting sequence. Therefore one can manipulate only sequences for which an enzyme is available. With current physical methods (AFM) any sequences can be cut, but the precise sequence specific and highly parallel cutting is not possible.
Near infrared (NIR) femtosecond laser systems have been used to optically knock out genomic regions of highly condensed DNA in human chromosomes as well as of single expanded (stretched) DNA molecules. Working with 80 MHz laser pulses at 800 nm of low 2 nJ pulse energy but at high TW/cm2 light intensities, multiphoton ionization and optical breakdown (OB) resulted in highly precise material ablation with sub-100 nm cut sizes. This is far below the diffraction-limited spot size. A minimum FWHM cut size of 65 nm was achieved in the case of the nanodissection of a laser-treated stretched λ-DNA (48kb) molecule which corresponded to 200 optically knocked out bases.
By the use of metal nanoparticles as energy coupling objects for fs laser radiation we expect a specific highly local destruction effect within the DNA molecule (cut). Thereby, a sequence-specific binding of DNA nanoparticle complexes along the target DNA is a fundamental condition. The effect of laser exposure on DNA and DNA-nanoparticle complexes are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.