This work aims at evaluating the spatial resolution and noise in 3D images acquired with a clinical Computed Tomography scanner dedicated to the breast (BCT). The presampled modulation transfer function (MTF) and the noise power spectrum (NPS) are measured. In addition, the capability of the system in showing simulated lesions and microcalcification clusters was assessed via a phantom test. The impact of the selected reconstruction algorithm on MTF, NPS, and simulated lesion visibility was evaluated. The available algorithms are the Standard (Std) and Calcification (Calc) reconstructions, which use an isotropic reconstructed voxel edge of 0.273 mm and the high-resolution (HR) reconstruction algorithm that uses an isotropic reconstructed voxel edge of 0.190 mm. The spatial frequency (expressed in mm-1 ) at which the MTF curve goes down to 10% (MTF10%) was found to be 1.0 mm-1 for the case of Std reconstruction in radial direction at the chest-wall; this value increases to 1.3 mm-1 and 1.5 mm-1 for the HR and Calc reconstructions, respectively. The distance from the isocenter did not impact the system spatial resolution. As expected, the improvement in the spatial resolution in the Calc and HR reconstruction algorithms is accompanied by an increase in the noise, especially at the higher frequencies, as shown in the 1D NPS. A phantom study showed that both simulated soft lesion with diameter of 1.8 mm and microcalcification cluster with grain diameter of 0.29 mm are visible, no matter what reconstruction algorithm is selected. Microcalcifications with diameter of 0.20 mm and 0.13 mm do not appear to be visible.
G. Mettivier, R. Ricciarci, A. Sarno, F. Maddaloni, M. Porzio, M. Staffa, S. Minelli, A. Santoro, E. Antignani, M. Masi, V. Landoni, P. Ordonez, F. Ferranti, L. Greco, S. Clemente, P. Russo
The aim of the DeepLook project, funded by INFN (Italy), is to implement a deep learning architecture for Computed Aided Detection (CAD), based on neural networks developed with deep learning methods, for the automatic detection and classification of breast lesions in DBT images. A preliminary step (started 2 years ago and still ongoing) was the creation of a dataset of annotated images. This dataset includes images acquired with different clinical DBT units and different acquisition geometries, on several hundred patients, containing a variety of possible breast lesions and normal cases of absence of lesions. This will make the diagnostic capacity of the CAD system particularly extensive in various clinical situations and on a significant sample of patients, so allowing the network to diagnose various types of lesions (at the level of the single tomosynthesis slices) and capable of operate on commercial DBT systems, also available from different vendors, as found in breast diagnosis departments. The developed CAD and first result of the indication of the slice containing the suspected mass will be presented.
KEYWORDS: Sensors, Modulation transfer functions, Monte Carlo methods, Scanners, Breast, 3D image processing, 3D modeling, Spatial resolution, Computer simulations, 3D scanning
This work proposes an empirical model for tuning spatial resolution and noise in simulated images in virtual clinical trials in x-ray breast imaging. In extending previous studies performed for direct conversion a-Se detectors used in digital mammography and digital breast tomosynthesis, this work introduces the model for the case of cone-beam computed tomography dedicated to the breast that uses a indirect conversion flat-panel detector. In the simulations, the detector is modeled as an absorbing layer whose material and thickness reflect those of the scintillator of the detector of a clinical scanner. The simulated images are then computed as a dose deposit map. The detector response curve, modulation transfer function (MTF) and noise power spectrum (NPS) were measured on a real detector. The same measurements were replicated in-silico for the simulated detector and scanner. The comparison of simulated and measured detector response curves permits to recover pixel values at the clinical scale. The difference between the simulated and measured MTFs permitted to introduce a linear filter for compensating simulated model simplification that determines a better spatial resolution in the simulated images with respect to real images. This filter presented a Gaussian shape in the Fourier domain with a standard deviation of 1.09 mm-1 , derived from those of the measured and simulated MTF curves, of 0.86 mm-1 and 1.41 mm-1 , respectively. Finally, the analysis of the NPS permits to compensate for noise characteristics due to the simulated model simplifications. The model applied to the simulated projection images produced MTF and normalized NPS in simulated 3D images, comparable to those obtained for the clinical scanner.
A Phase-Contrast breast CT facility based on a high-resolution CdTe photon-counting detector is under development at Elettra, the Italian Synchrotron Radiation (SR) facility in Trieste. The CT system exploits propagation-based phasecontrast imaging and phase-retrieval algorithm. The voxel size is 57×57×50 μm3 and the delivered MGDs, about 5 mGy, are comparable with clinical breast CT systems. In the present contribution, the comparisons between histological breast cancers and full breast CT images are presented from samples of breast mastectomy. The high resolution of the breast CT images and low noise due to the phase contrast allow a very fine matching between x-ray CT and histology at acceptable delivered doses.
KEYWORDS: Breast, Monte Carlo methods, Optical spheres, 3D image processing, Phase contrast, 3D modeling, Polymethylmethacrylate, Software development, Tomography, Visualization
A complete software platform based on anthropomorphic breast models used with both planar and three-dimensional phase contrast breast imaging is presented and subjectively validated. For the development of the platform, tests with three anthropomorphic breast phantoms, available both in computational and physical form, were designed and implemented. The models are characterized with different complexity: two phantoms are with spheres and one anthropomorphic. Further on, two of the physical breast models were created with the use of 3D printing techniques. These phantoms with thickness of 40 mm and 31 mm, respectively, were based on digital phantoms created with in-house developed software tools. The third physical breast phantom is the L1 phantom developed at Katholieke Universiteit Leuven with 58 mm thickness. Based on this physical phantom, a computational one was created. The three physical breast phantoms were imaged at ID17 biomedical imaging line at ESRF. Two acquisition setups were used: planar and limited angle tomography modes. Simulated and experimental planar and three-dimensional images were compared in terms of visual reproducibility. Results showed that phantoms characterized with more simple structure produce subjectively similar experimental and simulation appearance in terms of object reproduction and similar edge effects. The thicker phantom demonstrated lower visual coincidence between the two types of planar images, due to higher thickness and higher energy incident beam. The results of this study will be used in the design of new experimental study, to be conducted at lower incident beam energy as well as improving the modelling of phase contrast imaging by using Monte Carlo techniques.
KEYWORDS: Breast, Monte Carlo methods, Sensors, Tissues, Digital breast tomosynthesis, Clinical trials, X-rays, 3D image processing, X-ray imaging, Breast imaging
In silico reproductions of clinical exams represent an alternative strategy in the research and development of medical devices, which permit to avoid issues and costs related to clinical trials on patient population. In this work, we present a platform for virtual clinical trials in 2D and 3D x-ray breast imaging. The platform, developed by the medical physics team at University of Naples, Italy, permits to simulate digital mammography (DM), digital breast tomosynthesis (DBT) and CT dedicated to the breast (BCT) examinations. It relies on Monte Carlo simulations based on Geant4 toolkit and adopts digital models of patients derived from high-resolution 3D clinical breast images acquired at UC Davis, USA. Uncompressed digital breast models for BCT exam simulations were produced by means of a tissue classification algorithm; the compressed digital breast models for simulating DM and DBT are derived by the uncompressed ones via a simulated tissue compression. For a selected exam, specifications and digital patient, the platform computes breast image projections and glandular dose maps within the organ. Energy integrating a well as photon counting and spectral imaging detection scheme have been simulated. The current version of the software uses the Geant4 standard physics list Option4 and simulates and tracks <105 photons/s, when run on a 16-core CPU at 3.0 GHz. The developed platform will be an invaluable tool for R and D of apparatuses, and it will permit the access to clinical-like data to a broad research community. Digital patient exposures with the available phantom dataset will be possible for the same patient-derived phantom in uncompressed or compressed format, in DM, DBT and BCT modalities.
We are developing a platform for virtual (in silico) clinical trials in x-ray breast imaging and dosimetry fully based on Monte Carlo simulations and which adopts patient-like digital phantoms. We report the initial steps and first results of this project. Our collaboration was established for producing a “user-friendly” computational platform which reproduces both 2D (full-fields digital mammography) and 3D (digital breast tomosynthesis, CT dedicated to the breast) breast imaging examinations for technique optimization and for developing protocols and computed aided diagnostic applications. Dose optimization strategies and technique performance comparisons will be explored. A dataset of anatomically realistic, 2D and 3D digital breast phantoms have been produced by means of voxel classification and digital compression of clinical breast CT scans acquired at UC Davis. Monte Carlo simulations, based on the Geant4 toolkit, have been developed for insilico FFDM, DBT and BCT examinations.
KEYWORDS: Electron beams, X-rays, Laser systems engineering, X-ray sources, S band, Monte Carlo methods, Optical simulations, Hard x-rays, X-ray imaging, Compton scattering, Particle accelerators
There is a strong demand for small foot-print high-flux hard X-rays machines in order to enable a large variety of science activities and serve a multidisciplinary user community. For this purpose, two compact Inverse Compton Sources (ICSs) are currently being developed in Italy. The most recent one is the Bright and Compact X-ray Source (BriXS) which has recently been proposed to produce very energetic X-rays (up to 180 keV) and high photon flux (up to 1013 photons/s with expected bandwidth of 1-10%). BriXS will be installed in Milan and it will enable advanced large area radiological imaging applications to be conducted with mono-chromatic X-rays, as well as allowing basic fundamental science of matter and health sciences at both pre- and clinical levels. Based on an energy-recovery linac (ERL) scheme and superconducting technology, BriXS will operate in CW regime with an unprecedented electron beam repetition rate of 100 MHz. The second Italian ICS light source is the Southern Europe Thomson back-scattering source for Applied Research (STAR) which is currently installed at the University of Calabria (UniCal). STAR is a compact machine that has been designed to produce monochromatic and tunable, ps-long, polarized X-ray beams in the range 40-140 keV with a photon flux up to 1010 photons/s and energy bandwidth below 10%. The electron beam injector is based on normal-conducting technology in S-Band with a repetition rate up to 100 Hz.
A program devoted to performing the first in vivo synchrotron radiation (SR) breast computed tomography (BCT) is ongoing at the Elettra facility. Using the high spatial coherence of SR, phase-contrast (PhC) imaging techniques can be used. The latest high-resolution BCT acquisitions of breast specimens, obtained with the propagation-based PhC approach, are herein presented as part of the SYRMA-3D collaboration effort toward the clinical exam. Images are acquired with a 60-μm pixel dead-time-free single-photon-counting CdTe detector. The samples are imaged at 32 and 38 keV in a continuous rotating mode, delivering 5 to 20 mGy of mean glandular dose. Contrast-to-noise ratio (CNR) and spatial resolution performances are evaluated for both PhC and phase-retrieved images, showing that by applying the phase-retrieval algorithm a five-time CNR increase can be obtained with a minor loss in spatial resolution across soft tissue interfaces. It is shown that, despite having a poorer CNR, PhC images can provide a sharper visualization of microcalcifications, thus being complementary to phase-retrieved images. Furthermore, the first full-volume scan of a mastectomy sample (9 × 9 × 3 cm3) is reported. This investigation into surgical specimens indicates that SR BCT in terms of CNR, spatial resolution, scan duration, and scan volume is feasible.
A program devoted to perform the first in-vivo monochromatic breast computed tomography (BCT) is ongoing at the Elettra Synchrotron Facility. Since the synchrotron radiation provides high energy resolution and spatial coherence, phase-contrast (PhC) imaging techniques can be used. The latest high resolution BCT acquisitions of breast specimens, obtained with the propagation-based PhC approach, are herein presented as part of a wider framework, devoted to the optimization of acquisition and reconstruction parameters towards the clinical exam. Images are acquired with a state-of-the-art dead-time-free single-photon-counting CdTe detector with a 60 µm pixel size. The samples are imaged at 32 and 38 keV in continuous rotating mode, delivering 5-20 mGy of mean glandular dose (MGD). Contrast-to-noise ratio (CNR) and spatial resolution performances are evaluated for both absorption and phase-retrieved images considering tumor/adipose tissue interfaces. We discuss two different phase-retrieval approaches, showing that a remarkable CNR increase (from 0.5 to 3.6) can be obtained without a significant loss in spatial resolution. It is shown that, even if the non-phase-retrieved image has a poorer CNR, it is useful for evaluating the spiculation of a microcalcification: in this context, absorption and phase-retrieved images have to be regarded as complementary information. Furthermore, the first full volume acquisition of a mastectomy, with a 9 cm diameter and 3 cm height, is reported. This investigation on surgical specimens indicates that monochromatic BCT with synchrotron radiation in terms of CNR, spatial resolution, scan duration and scan volume is feasible.
We devised a multimodal planar imaging system for in vivo mouse imaging, employing four modalities: optical imaging, green and red fluorescence reflectance imaging, radionuclide imaging and X-ray radiography. We are testing separately, and then in a combined way, each detection mode, via in vivo mouse imaging, with the final purpose of identifying small implanted tumor masses, of providing early tumor detection and following metastatic dissemination. We describe the multimodal system and summarize its main performance, as assessed in our research work in the various stages of the development, in fluorescence and radionuclide tests on healthy or tumor bearing mice. For gamma-ray detection we used a semiconductor pixel detector (Medipix1 or Medipix2) that works in single photon counting. Laser-induced fluorescence reflectance imaging was performed in vivo using a pulsed light source to excite the fluorescence emission of injected hematoporphyrin (HP) compound, a CCD camera, a low pass filter and a commercial image analysis system. The bimodal system was used for the acquisition of combined images of the tumor area (fluorescence: animal top view; radionuclide: bottom view). It was shown that the tumor area can be imaged in a few minutes, with a few millimeter resolution (1 mm pinhole diameter), radioactively (99mTc radiotracer), and with the fluorescence system and that, in one case, only one of the two modalities is able to recognize the tumor. A phantom study for thyroid imaging with 125I source embedded in a simulated tissue indicated a spatial resolution of 1.25 mm FWHM with a 1 mm pinhole.
Recently multimodal imaging systems have been devised because the combination of different imaging modalities results in the complementarity and integration of the techniques and in a consequent improvement of the diagnostic capabilities of the multimodal system with respect to each separate imaging modality.
We developed a simple and reliable HematoPorphyrin (HP) mediated Fluorescence Reflectance Imaging (FRI) system that allows for in vivo real time imaging of surface tumors with a large field of view. The tumor cells are anaplastic human thyroid carcinoma-derived ARO cells, or human papillary thyroid carcinoma-derived NPA cells. Our measurements show that the optical contrast of the tumor region image is increased by a simple digital subtraction of the background fluorescence and that HP fluorescence emissivity of ARO tumors is about 2 times greater than that of NPA tumors, and about 4 times greater than that of healthy tissues. This is also confirmed by spectroscopic measurements on histological sections of tumor and healthy tissues. It was shown also the capability of this system to distinguish the tumor type on the basis of the different intensity of the fluorescence emission, probably related to the malignancy degree.
The features of this system are complementary with those ones of a pixel radionuclide detection system, which allows for relatively time expensive, narrow field of view measurements, and applicability to tumors also deeply imbedded in tissues. The fluorescence detection could be used as a large scale and quick analysis tool and could be followed by narrow field, higher resolution radionuclide measurements on previously determined highly fluorescent regions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.