A highly miniaturized limb sounder for the observation of the O2 A-band to derive temperatures in the mesosphere and lower thermosphere is presented. The instrument consists of a monolithic spatial heterodyne spectrometer, which is able to resolve the rotational structure of that band. The SHS operates at a Littrow wavelength of 762 nm with a resolving power in the order of 10.000. Complemented by a front optics with an acceptance angle of less than ±1 degree and a detector optics, the entire optical system fits into a volume of about 1.5 liters. This allows this instrument to be flown on a three or six unit CubeSat. In this paper, we introduce the optical design and computer simulations on the expected performance of the instrument. The laboratory characterization of a prototype instrument, which has been built on university level, and the lessons learned are discussed.
Neurophotonics methods offer powerful ways to access neuronal signals and circuits. We highlight recent advances and current themes in this area, emphasizing tools for mapping, monitoring, and manipulating excitatory projection neurons and their synaptic circuits in mouse motor cortex.
In a previous study by Zhang and Shepherd, an empirical model for the daytime (sunlit) O(1S) green line emission layer was deduced using more than 520,000 emission rate profiles observed by he Wind Imaging Interferometer (WINDII) on the Upper Atmospheric Research Satellite (UARS) during 1991-1997. In the model, the peak emission rates and their altitudes, and the widths of both the F-layer and the E-layer of the emission are given as functions of the solar zenith angle χ and solar irradiance using F10.7 as a proxy. With this model, the daytime emission rate directly related
to χ and solar irradiance can be calculated and removed, resulting in the residual emission rates. In this paper, the residual emission rates are presented in both geographic and geomagnetic latitude and local time coordinates grouped by seasons and Kp values. The main results are as follows. (1) The residual emission rates show a midday enhancement at the equator and midday depletions at mid-latitudes in the E-layer. Those variations may be attributed to the diurnal tide. The midday equatorial enhancement also occurs in the F-layer. (2) There is a deep gap in the E-layer at 35°S-65°S at the June solstice, which is wider in the morning than in the afternoon when Kp is low, and vice versa when Kp is high.
(3) At latitudes poleward of 50° the daytime O(1S) aurora is conspicuously displayed in geomagnetic coordinates in both layers even for days with low Kp values, peaking at 60-70° geomagnetic latitudes and in the morning sector or in the afternoon sector or both depending on seasons. The aurora is significantly enhanced when Kp is increased. (4) There is a midday (geomagnetic noon) gap at high latitudes in both layers with a width of 3-4 hours. The gap is deepened when Kp is increased. (5) The integrated volume emission rates have similar features at high latitudes to those seen in the peak volume emission rates.
In a previous paper by Zhang and Shepherd, an empirical model for the peak volume emission rate (Vp) and the integrated volume emission rate of the O(1D) (630 nm) dayglow was deduced from more than 130,000 daytime emission rate profiles observed by the Wind Imaging Interferometer (WINDII) on the Upper Atmospheric Research Satellite (UARS) during 1991-1995. In the model, the emission rates are given as functions of the solar zenith
angle (χ) and solar irradiance using the F10.7 cm flux as a proxy. This paper extends the daytime empirical model into the twilight zone and includes the height of the peak emission rate and the width of the emission layer. For a given day, the O(1D) emission layer during both daytime and twilight-time is found to be sensitive to the solar zenith angle when solar irradiance is treated as a constant. Positive linear relationships are found between the daytime emission rate and cos1/eχ at χ < 87° the twilight-time emission rate and cos(χ+0.25)1.8 at 87° less than or equal to χ less than or equal to 104.5°, and the width of the emission layer and cosχ at χ < 87°. A negative linear relationship is found between the peak emission rate and its height at χ < 104.5°. In the long-term, the emission layer varies according to the solar cycle in that both the emission rate and the height of the emission layer increase with increasing solar irradiance. The empirical model provides the peak volume emission rate and its height, and the integrated emission rate, for both daytime and twilight zones, and the width of the daytime emission layer as functions of the solar zenith angle and solar irradiance using F10.7, E10.7, and Lyman-β as proxies. The profiles of the volume emission rate and global morphology of the red line emission therefore can be constructed using the model. Effects of solar storms, and physical precesses and photochemical reactions other than that due to the direct solar energy deposition in the thermosphere can be derived by comparing to the model.
Observations of the atomic oxygen green line airglow at 557.7 nm began in England with Lord Rayleigh IV in 1923. The large-scale circulation of the atmosphere is now well known, producing a mesopause that is cold in summer and warm in winter. The corresponding transport of atomic oxygen should produce high airglow emission rates in winter, and low values in summer. Thus remotely sensed airglow observations are potentially capable of providing a record of the large-scale circulation of the thermosphere. Here a search is made for the signature of the large-scale circulation using data from the WIND Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite, and model results from the TIME-GCM model, making use of earlier ground-based results as well. However, the signature of this circulation is not readily found. In the tropical region a well-defined semi-annual variation of emission rate is identified; this appears to result from the semi-annual variation of the diurnal tide. At mid- and high latitudes a pronounced annual variation is found with an emission rate maximum in the autumn in both hemispheres. At still higher latitudes ground-based observations show this strong autumn maximum, with deep depletion of atomic oxygen in the springtime.
To date there have not been any direct measurements of winds in the Martian atmosphere. Measurements such as these are needed in order to understand the nature of the circulation and the transport of constituents in the atmosphere of this planet. In this paper, a conceptual design for a small visible/near-IR imaging interferometer capable of fulfilling this need is described. The design is based on a similar successful instrument, the Wind Imaging Interferometer (WINDII), which flew in Earth orbit. The basic measurement set includes Doppler shifts (from which wind is derived), rotational temperatures, line widths and radiances of isolated lines in the O2(α1Δg) band airglow and O(1S) airglow emission. The design challenges which were met in converting an instrument designed for terrestrial applications to one capable of flying to Mars and operating in conditions there include reducing the mass and power requirements and adapting the instrument to appropriate data rate and S/N requirements. The resulting instrument has a mass of approximately 15 kg, requires on average, 10 Watts of power and has a data rate of 32Mbits/day. In this paper the design of this instrument and how it accommodates the particular requirements of a Mars mission are described.
The Stratospheric Wind Interferometer For Transport studies (SWIFT) is a passive sensor designed to measure winds in the stratosphere from a satellite. It is a field-widened Michelson interferometer very similar to the WINDII instrument on UARS but operates in the mid-IR, where it detects the Doppler shifts of atmospheric thermal emission lines of ozone. SWIFT uses a HgCdTe array detector to view the emission at the Earth's limb. Measurements are subsequently inverted by computer to obtain true vertical profiles of the stratospheric wind in the altitude range 20 to 40 km. Two orthogonal fields of view allow wind vectors to be obtained by combining the components observed from different directions a few minutes apart. Prototype Ge wafer etalon filters and a field-widened Michelson interferometer for the Mid-IR have been built and tested, with good results. Modeling studies indicate that a measurement precision of 5 m/s can be obtained throughout the altitude range of interest. In addition to the winds, SWIFT will measure ozone densities in the stratosphere. SWIFT has been selected for flight on NASDA's GCOM-A1 satellite and a Phase A study is being supported by ESA and the Canadian Space Agency.
KEYWORDS: Mirrors, Sensors, Temperature metrology, Oxygen, Michelson interferometers, Interferometers, Thermosphere, Calibration, Space telescopes, Space operations
The Waves Michelson Interferometer (WAMI) is designed to provide simultaneous measurements of dynamical and constituent signatures in the upper stratosphere, mesosphere and lower thermosphere. It is being included as part of the Waves Explorer mission (G. Swenson, P.I. being proposed for NASA's MIDEX program. It is a field-widened Michelson interferometer based on the same design principle as the successful Wind Imaging Interferometer (WINDII). WAMI includes visible and near-IR channels, a segmented interferometer mirror for simultaneous fringe sampling at different optical paths and views the atmosphere in six distinct directions. Use of the segmented mirrors minimizes the aliasing of atmospheric intensity variations into the fringe parameter determinations. This technique also allows two emissions to be viewed simultaneously through the same optical channel. The emissions chosen include lines in the molecular oxygen IR-atmospheric band, a doublet in the hydroxyl Meinel bands and the oxygen green line. The daytime coverage includes winds from 45 to 180 km, and rotational temperature and ozone density from 45 to 95 km. The nighttime coverage is restricted to the airglow layer centered near 90 km where atomic oxygen, horizontal wind and rotational temperature measurements are provided. These measurements provide a rich data set from which dynamics, energetics and constituent budgets can be determined.
KEYWORDS: Sensors, Data modeling, Visibility, Fabry–Perot interferometers, Satellites, Atmospheric modeling, Wind measurement, Interferometers, Optical filters, Signal to noise ratio
The Stratospheric Wind Interferometer for Transport Studies (SWIFT) is a satellite-born limb-viewing instrument which will be capable of globally measuring horizontal winds at altitudes of between 20 and 40 km with a precision of < 5 m/s, a vertical resolution of 2 km and a horizontal resolution on the order of a hundred km. SWIFT will map stratospheric dynamics. The data from the instrument will be important input for models which seek to predict the global distribution of stratospheric ozone. In addition, the SWIFT data will provide observational input to tropospheric weather models, which are currently being extended to the stratosphere. With global stratospheric wind data, these enhanced models have the potential to significantly improve weather forecasting in the troposphere. The instrument will observe a thermal emission line of an abundant atmospheric constituent near 8 micrometers using a field widened Michelson interferometer. A doppler shift of the emission line is detected as a phase shift at the output of the interferometer. A 2D array detector monitors the phase both perpendicular to and along the limb, thus mapping the velocity field. The fundamental feasibility of the instrument will be shown. The basic instrument requirements are described and the instrument parameters are derived from them. The instrument will utilize radiatively cooled optics and Stirling cycle coolers for the detector and filters. This instrument will be suitable for inclusion on a medium to large satellite with multiple instruments. The lack of cryogens is consistent with its intended use on the operational weather satellites of the future.
A method is described for obtaining four simultaneous phase- stepped images from a Michelson interferometer in order to measure the Doppler shift of a spectral line. One of the Michelson mirrors is divided into quadrants and each quadrant coated separately, so the path difference varies by about (lambda) /4 from one quadrant to another. An image of the mirrors is formed outside the interferometer, where the light from the quadrants is diverted in different directions, and four separate images of the field of view are formed, one for each quadrant. For a given direction in the field of view, the fringe is sampled at four points on the interferogram separated by (lambda) /4 and from these four intensities, the phase of the fringe is calculated. Doppler shifts of the spectral line are seen as changes in the phase of the fringe. In earlier versions of the imaging Doppler Michelson technique, the sampling was done in sequence. Simultaneous sampling eliminates the errors caused by intensity variations during the measurement, making the technique useful for rapidly varying sources such as aurora.
A ground-based instrument for measurement of perturbations of the rotational temperature and vertical column emission rate of the O2 atmospheric nightglow layer at 94 km and the OH Meinel layer at 86 km is described with special emphasis on its suitability as a remote field instrument. Ground-based instruments are needed in the detailed study of planetary scale dynamic effects in the upper atmosphere because they show detailed perturbation development in both solar and universal time that is missed by satellite-borne instruments. Ground-based instruments must be stable, accessible to but not dependent upon operator interaction, and inexpensive. The technique of interference filter spectral imaging has shown itself to satisfy these requirements when embodied in the instrument MORTI, a mesopause oxygen rotational temperature imager. SATI represents a complete re-design of MORTI in order to make it more flexible for ground-based networks. In particular, the cryogenic cooling was replaced by thermo-electric cooling, removing the requirement for daily attention, an OH channel was added that will allow comparison of perturbation amplitudes at two significantly different altitudes, and real-time temperature and emission rate readout was incorporated into the revised software.
The wind imaging interferometer (WINDII) on the Upper Atmosphere Research Satellite (UARS) is a CCD imager which views a selection of airglow emissions at the limb through a field-widened Michelson interferometer. Winds are calculated from the Doppler shifts of the spectral lines, detected as changes in the phase of the fringes. WINDII has been operating in space for almost three years and its performance has been monitored over that time. It continues to function well, though subtle changes have been seen. This paper is a discussion of the endurance of the instrument and of the changes that have occurred during the mission.
Among the emissions viewed by the wind imaging interferometer (WINDII) on the Upper Atmosphere Research Satellite (UARS) are selected lines in the (0 - 0) transition of the O2 atmospheric band. These lines are viewed simultaneously using a narrow band filter/wide- angle Michelson interferometer combination. The narrow band filter is used to separate the lines on the CCD (spectral-spatial scanning) and the Michelson used to modulate the emissions so that winds and rotational temperatures may be measured from the Doppler shifts and relative intensities of the lines. In this report this technique is outlined and the on-orbit behavior since launch summarized.
The need to measure upper atmospheric winds has led to the development of solid glass field- widened imaging Michelson interferometers that operate at a fixed path difference. This approach may be described as `optical Doppler interferometry' or `phase stepping interferometry.' It has culminated in the flight of WINDII, the WIND Imaging Interferometer on NASA's Upper Atmosphere Research Satellite.
WINDII is an imaging, field widened Michelson interferometer built by Canada and France for flight on NASA's Upper Atmosphere Research Satellite, which was launched September 12, 1991. Its primary purpose is to measure winds in the 80-300 km region of the atmosphere by measuring the Doppler shift of the airglow emissions. This paper discusses the design, testing and performance of the baffle system used for daytime observations.
WINDII is an imaging, field widened Michelson interferometer built by Canada and France for ffight on NASA's Upper Atmosphere Research Satellite, which was launched September 12, 1991. Its primary purpose is to measure winds in the 80—300 km region of the atmosphere by observing airglow emissions. It has performed well to date. The design of the instrument is outlined in this paper.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.